-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathr_elias_28.py
330 lines (243 loc) · 12 KB
/
r_elias_28.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#same as r_elias_4 but with mse
import numpy as np
import data_transforms
import data_iterators
import pathfinder
import lasagne as nn
from collections import OrderedDict, namedtuple
from functools import partial
import lasagne.layers.dnn as dnn
import lasagne
import theano.tensor as T
import utils
restart_from_save = False
rng = np.random.RandomState(33)
# transformations
p_transform = {'patch_size': (48, 48, 48),
'mm_patch_size': (48, 48, 48),
'pixel_spacing': (1., 1., 1.)
}
p_transform_augment = {
'translation_range_z': [-3, 3],
'translation_range_y': [-3, 3],
'translation_range_x': [-3, 3],
'rotation_range_z': [-180, 180],
'rotation_range_y': [-180, 180],
'rotation_range_x': [-180, 180]
}
alternative_view = False
# data preparation function
def data_prep_function(data, patch_center, pixel_spacing, luna_origin, p_transform,
p_transform_augment, world_coord_system, **kwargs):
x, patch_annotation_tf = data_transforms.transform_patch3d(data=data,
luna_annotations=None,
patch_center=patch_center,
p_transform=p_transform,
p_transform_augment=p_transform_augment,
pixel_spacing=pixel_spacing,
luna_origin=luna_origin,
world_coord_system=world_coord_system)
x = data_transforms.hu2normHU(x)
return x
data_prep_function_train = partial(data_prep_function, p_transform_augment=p_transform_augment,
p_transform=p_transform, world_coord_system=True)
data_prep_function_valid = partial(data_prep_function, p_transform_augment=None,
p_transform=p_transform, world_coord_system=True)
# data iterators
batch_size = 16
nbatches_chunk = 1
chunk_size = batch_size * nbatches_chunk
train_valid_ids = utils.load_pkl(pathfinder.LUNA_VALIDATION_SPLIT_PATH)
train_pids, valid_pids = train_valid_ids['train'], train_valid_ids['valid']
order_objectives = ['size',
'spiculation',
'malignancy',
'texture']
property_type = {'size': 'continuous',
'spiculation': 'bounded_continuous',
'malignancy': 'bounded_continuous',
'texture': 'classification'} # 0:nothing, 1: non-solid/ground glass, 2: mixed, 3: solid
property_bin_borders = {'texture': [1.5,2.5,3.5,4.5,100]}
norm_weights_loss = {'size': 1./30.,
'spiculation': 1.,
'malignancy': 1.,
'texture': 1./3} #class
init_values_final_units = {
'size': .1,
'spiculation': .1,
'malignancy': .1,
'texture': .1} #class
train_data_iterator = data_iterators.CandidatesLunaPropsDataGenerator(data_path=pathfinder.LUNA_DATA_PATH,
batch_size=chunk_size,
transform_params=p_transform,
data_prep_fun=data_prep_function_train,
rng=rng,
patient_ids=train_valid_ids['train'],
full_batch=True, random=True, infinite=True,
positive_proportion=0.8,
order_objectives = order_objectives,
property_bin_borders = property_bin_borders,
property_type = property_type,
return_enable_target_vector = True)
valid_data_iterator = data_iterators.CandidatesLunaPropsValidDataGenerator(data_path=pathfinder.LUNA_DATA_PATH,
transform_params=p_transform,
data_prep_fun=data_prep_function_valid,
patient_ids=train_valid_ids['valid'],
order_objectives = order_objectives,
property_bin_borders = property_bin_borders,
property_type = property_type,
return_enable_target_vector = True)
nchunks_per_epoch = train_data_iterator.nsamples / chunk_size
max_nchunks = nchunks_per_epoch * 100
validate_every = int(5. * nchunks_per_epoch)
save_every = int(5. * nchunks_per_epoch)
learning_rate_schedule = {
0: 4e-4,
int(max_nchunks * 0.5): 1e-4,
int(max_nchunks * 0.6): 5e-5,
int(max_nchunks * 0.7): 2.5e-5,
int(max_nchunks * 0.8): 1.25e-5,
int(max_nchunks * 0.9): 0.625e-5
}
# model
conv3d = partial(dnn.Conv3DDNNLayer,
filter_size=3,
pad='same',
W=nn.init.Orthogonal(),
b=nn.init.Constant(0.01),
nonlinearity=nn.nonlinearities.very_leaky_rectify)
max_pool3d = partial(dnn.MaxPool3DDNNLayer,
pool_size=2)
drop = lasagne.layers.DropoutLayer
bn = lasagne.layers.batch_norm
dense = partial(lasagne.layers.DenseLayer,
W=lasagne.init.Orthogonal('relu'),
b=lasagne.init.Constant(0.0),
nonlinearity=lasagne.nonlinearities.rectify)
def inrn_v2(lin):
n_base_filter = 32
l1 = conv3d(lin, n_base_filter, filter_size=1)
l2 = conv3d(lin, n_base_filter, filter_size=1)
l2 = conv3d(l2, n_base_filter, filter_size=3)
l3 = conv3d(lin, n_base_filter, filter_size=1)
l3 = conv3d(l3, n_base_filter, filter_size=3)
l3 = conv3d(l3, n_base_filter, filter_size=3)
l = lasagne.layers.ConcatLayer([l1, l2, l3])
l = conv3d(l, lin.output_shape[1], filter_size=1)
l = lasagne.layers.ElemwiseSumLayer([l, lin])
l = lasagne.layers.NonlinearityLayer(l, nonlinearity=lasagne.nonlinearities.rectify)
return l
def inrn_v2_red(lin):
# We want to reduce our total volume /4
den = 16
nom2 = 4
nom3 = 5
nom4 = 7
ins = lin.output_shape[1]
l1 = max_pool3d(lin)
l2 = conv3d(lin, ins // den * nom2, filter_size=3, stride=2)
l3 = conv3d(lin, ins // den * nom2, filter_size=1)
l3 = conv3d(l3, ins // den * nom3, filter_size=3, stride=2)
l4 = conv3d(lin, ins // den * nom2, filter_size=1)
l4 = conv3d(l4, ins // den * nom3, filter_size=3)
l4 = conv3d(l4, ins // den * nom4, filter_size=3, stride=2)
l = lasagne.layers.ConcatLayer([l1, l2, l3, l4])
return l
def feat_red(lin):
# We want to reduce the feature maps by a factor of 2
ins = lin.output_shape[1]
l = conv3d(lin, ins // 2, filter_size=1)
return l
no_properties = len(order_objectives)
def build_model():
l_in = nn.layers.InputLayer((None, ) + p_transform['patch_size'])
l_ds = nn.layers.DimshuffleLayer(l_in, pattern=[0,'x',1,2,3])
l_target = nn.layers.InputLayer((None, no_properties))
l_enable_target = nn.layers.InputLayer((None, no_properties))
l = conv3d(l_ds, 64)
l = inrn_v2_red(l)
l = inrn_v2(l)
l = inrn_v2_red(l)
l = inrn_v2(l)
l = inrn_v2_red(l)
l = inrn_v2_red(l)
l = dense(drop(l), 512)
final_layers = []
unit_ptr = 0
for obj_idx, obj_name in enumerate(order_objectives):
ptype = property_type[obj_name]
if ptype == 'classification':
num_units = len(property_bin_borders[obj_name])
l_fin = nn.layers.DenseLayer(l, num_units=num_units,
W=lasagne.init.Orthogonal(),
b=lasagne.init.Constant(init_values_final_units[obj_name]),
nonlinearity=nn.nonlinearities.softmax, name='dense_softmax_'+ptype+'_'+obj_name)
elif ptype == 'continuous':
l_fin = nn.layers.DenseLayer(l, num_units=1,
W=lasagne.init.Orthogonal(),
b=lasagne.init.Constant(init_values_final_units[obj_name]),
nonlinearity=nn.nonlinearities.softplus, name='dense_softplus_'+ptype+'_'+obj_name)
elif ptype == 'bounded_continuous':
l_fin = nn.layers.DenseLayer(l, num_units=1,
W=lasagne.init.Orthogonal(),
b=lasagne.init.Constant(init_values_final_units[obj_name]),
nonlinearity=nn.nonlinearities.sigmoid, name='dense_sigmoid_'+ptype+'_'+obj_name)
else:
raise
final_layers.append(l_fin)
l_out = nn.layers.ConcatLayer(final_layers, name = 'final_concat_layer')
return namedtuple('Model', ['l_in', 'l_out', 'l_target', 'l_enable_target'])(l_in, l_out, l_target, l_enable_target)
d_objectives_deterministic = {}
d_objectives = {}
def bounded_continuous_crossentropy(target_idx, prediction_idx, predictions, targets, epsilon):
predictions = predictions[:,prediction_idx]
predictions = T.cast(T.clip(predictions, epsilon, 1.-epsilon), 'float32')
targets = targets[:,target_idx]
crossentropy = targets * T.log(predictions) + (1-targets)*T.log(1.-predictions)
bounded_continuous_ce = crossentropy - (targets * T.log(targets) + (1-targets)*T.log(1.-targets))
return bounded_continuous_ce
def sqe(target_idx, prediction_idx, predictions, targets):
predictions = predictions[:,prediction_idx]
targets = targets[:,target_idx]
out = nn.objectives.squared_error(predictions,targets)
return out
def cce(target_idx, prediction_idcs, predictions, targets, epsilon):
predictions = predictions[:,prediction_idcs[0]:prediction_idcs[1]]
predictions = T.cast(T.clip(predictions, epsilon, 1.-epsilon), 'float32')
targets = T.cast(targets[:,target_idx], 'int32')
cc = nn.objectives.categorical_crossentropy(predictions,targets)
return cc
def build_objective(model, deterministic=False, epsilon=1e-12):
predictions = nn.layers.get_output(model.l_out, deterministic=deterministic)
targets = nn.layers.get_output(model.l_target)
enable_targets = nn.layers.get_output(model.l_enable_target)
sum_of_objectives = 0
unit_ptr = 0
for obj_idx, obj_name in enumerate(order_objectives):
ptype = property_type[obj_name]
if ptype == 'classification':
num_units = len(property_bin_borders[obj_name])
v_obj = cce(obj_idx, (unit_ptr, unit_ptr+num_units), predictions, targets, epsilon)
# take the mean of the objectives where it matters (enabled targets)
obj_scalar = T.sum(enable_targets[:,obj_idx] * v_obj) / (0.00001 + T.sum(enable_targets[:,obj_idx]))
unit_ptr = unit_ptr + num_units
elif ptype == 'continuous':
v_obj = sqe(obj_idx, unit_ptr, predictions, targets)
obj_scalar = T.mean(v_obj)
unit_ptr += 1
elif ptype == 'bounded_continuous':
#v_obj = bounded_continuous_crossentropy(obj_idx, unit_ptr, predictions, targets, epsilon)
v_obj = sqe(obj_idx, unit_ptr, predictions, targets)
obj_scalar = T.mean(v_obj)
unit_ptr += 1
else:
raise
if deterministic:
d_objectives_deterministic[obj_name] = obj_scalar
else:
d_objectives[obj_name] = obj_scalar
sum_of_objectives += norm_weights_loss[obj_name] * obj_scalar
return sum_of_objectives
def build_updates(train_loss, model, learning_rate):
updates = nn.updates.adam(train_loss, nn.layers.get_all_params(model.l_out, trainable=True), learning_rate)
return updates