-
Notifications
You must be signed in to change notification settings - Fork 40
/
utils_lung.py
382 lines (317 loc) · 12.6 KB
/
utils_lung.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import dicom
import SimpleITK as sitk
import numpy as np
import csv
import os
from collections import defaultdict
import cPickle as pickle
import glob
import utils
def read_pkl(path):
d = pickle.load(open(path, "rb"))
return d['pixel_data'], d['origin'], d['spacing']
def read_mhd(path):
itk_data = sitk.ReadImage(path.encode('utf-8'))
pixel_data = sitk.GetArrayFromImage(itk_data)
origin = np.array(list(reversed(itk_data.GetOrigin())))
spacing = np.array(list(reversed(itk_data.GetSpacing())))
return pixel_data, origin, spacing
def world2voxel(world_coord, origin, spacing):
stretched_voxel_coord = np.absolute(world_coord - origin)
voxel_coord = stretched_voxel_coord / spacing
return voxel_coord
def read_dicom(path):
d = dicom.read_file(path)
metadata = {}
for attr in dir(d):
if attr[0].isupper() and attr != 'PixelData':
try:
metadata[attr] = getattr(d, attr)
except AttributeError:
pass
metadata['InstanceNumber'] = int(metadata['InstanceNumber'])
metadata['PixelSpacing'] = np.float32(metadata['PixelSpacing'])
metadata['ImageOrientationPatient'] = np.float32(metadata['ImageOrientationPatient'])
try:
metadata['SliceLocation'] = np.float32(metadata['SliceLocation'])
except:
metadata['SliceLocation'] = None
metadata['ImagePositionPatient'] = np.float32(metadata['ImagePositionPatient'])
metadata['Rows'] = int(metadata['Rows'])
metadata['Columns'] = int(metadata['Columns'])
metadata['RescaleSlope'] = float(metadata['RescaleSlope'])
metadata['RescaleIntercept'] = float(metadata['RescaleIntercept'])
return np.array(d.pixel_array), metadata
def extract_pid_dir(patient_data_path):
return patient_data_path.split('/')[-1]
def extract_pid_filename(file_path, replace_str='.mhd'):
return os.path.basename(file_path).replace(replace_str, '').replace('.pkl', '')
def get_candidates_paths(path):
id2candidates_path = {}
file_paths = sorted(glob.glob(path + '/*.pkl'))
for p in file_paths:
pid = extract_pid_filename(p, '.pkl')
id2candidates_path[pid] = p
return id2candidates_path
def get_patient_data(patient_data_path):
slice_paths = os.listdir(patient_data_path)
sid2data = {}
sid2metadata = {}
for s in slice_paths:
slice_id = s.split('.')[0]
data, metadata = read_dicom(patient_data_path + '/' + s)
sid2data[slice_id] = data
sid2metadata[slice_id] = metadata
return sid2data, sid2metadata
def ct2HU(x, metadata):
x = metadata['RescaleSlope'] * x + metadata['RescaleIntercept']
x[x < -1000] = -1000
return x
def read_dicom_scan(patient_data_path):
sid2data, sid2metadata = get_patient_data(patient_data_path)
sid2position = {}
for sid in sid2data.keys():
sid2position[sid] = get_slice_position(sid2metadata[sid])
sids_sorted = sorted(sid2position.items(), key=lambda x: x[1])
sids_sorted = [s[0] for s in sids_sorted]
z_pixel_spacing = []
for s1, s2 in zip(sids_sorted[1:], sids_sorted[:-1]):
z_pixel_spacing.append(sid2position[s1] - sid2position[s2])
z_pixel_spacing = np.array(z_pixel_spacing)
try:
assert np.all((z_pixel_spacing - z_pixel_spacing[0]) < 0.01)
except:
print 'This patient has multiple series, we will remove one'
sids_sorted_2 = []
for s1, s2 in zip(sids_sorted[::2], sids_sorted[1::2]):
if sid2metadata[s1]["InstanceNumber"] > sid2metadata[s2]["InstanceNumber"]:
sids_sorted_2.append(s1)
else:
sids_sorted_2.append(s2)
sids_sorted = sids_sorted_2
z_pixel_spacing = []
for s1, s2 in zip(sids_sorted[1:], sids_sorted[:-1]):
z_pixel_spacing.append(sid2position[s1] - sid2position[s2])
z_pixel_spacing = np.array(z_pixel_spacing)
assert np.all((z_pixel_spacing - z_pixel_spacing[0]) < 0.01)
pixel_spacing = np.array((z_pixel_spacing[0],
sid2metadata[sids_sorted[0]]['PixelSpacing'][0],
sid2metadata[sids_sorted[0]]['PixelSpacing'][1]))
img = np.stack([ct2HU(sid2data[sid], sid2metadata[sid]) for sid in sids_sorted])
return img, pixel_spacing
def sort_slices_position(patient_data):
return sorted(patient_data, key=lambda x: get_slice_position(x['metadata']))
def sort_sids_by_position(sid2metadata):
return sorted(sid2metadata.keys(), key=lambda x: get_slice_position(sid2metadata[x]))
def sort_slices_jonas(sid2metadata):
sid2position = slice_location_finder(sid2metadata)
return sorted(sid2metadata.keys(), key=lambda x: sid2position[x])
def get_slice_position(slice_metadata):
"""
https://www.kaggle.com/rmchamberlain/data-science-bowl-2017/dicom-to-3d-numpy-arrays
"""
orientation = tuple((o for o in slice_metadata['ImageOrientationPatient']))
position = tuple((p for p in slice_metadata['ImagePositionPatient']))
rowvec, colvec = orientation[:3], orientation[3:]
normal_vector = np.cross(rowvec, colvec)
slice_pos = np.dot(position, normal_vector)
return slice_pos
def slice_location_finder(sid2metadata):
"""
:param slicepath2metadata: dict with arbitrary keys, and metadata values
:return:
"""
sid2midpix = {}
sid2position = {}
for sid in sid2metadata:
metadata = sid2metadata[sid]
image_orientation = metadata["ImageOrientationPatient"]
image_position = metadata["ImagePositionPatient"]
pixel_spacing = metadata["PixelSpacing"]
rows = metadata['Rows']
columns = metadata['Columns']
# calculate value of middle pixel
F = np.array(image_orientation).reshape((2, 3))
# reversed order, as per http://nipy.org/nibabel/dicom/dicom_orientation.html
i, j = columns / 2.0, rows / 2.0
im_pos = np.array([[i * pixel_spacing[0], j * pixel_spacing[1]]], dtype='float32')
pos = np.array(image_position).reshape((1, 3))
position = np.dot(im_pos, F) + pos
sid2midpix[sid] = position[0, :]
if len(sid2midpix) <= 1:
for sp, midpix in sid2midpix.iteritems():
sid2position[sp] = 0.
else:
# find the keys of the 2 points furthest away from each other
max_dist = -1.0
max_dist_keys = []
for sp1, midpix1 in sid2midpix.iteritems():
for sp2, midpix2 in sid2midpix.iteritems():
if sp1 == sp2:
continue
distance = np.sqrt(np.sum((midpix1 - midpix2) ** 2))
if distance > max_dist:
max_dist_keys = [sp1, sp2]
max_dist = distance
# project the others on the line between these 2 points
# sort the keys, so the order is more or less the same as they were
# max_dist_keys.sort(key=lambda x: int(re.search(r'/sax_(\d+)\.pkl$', x).group(1)))
p_ref1 = sid2midpix[max_dist_keys[0]]
p_ref2 = sid2midpix[max_dist_keys[1]]
v1 = p_ref2 - p_ref1
v1 /= np.linalg.norm(v1)
for sp, midpix in sid2midpix.iteritems():
v2 = midpix - p_ref1
sid2position[sp] = np.inner(v1, v2)
return sid2position
def get_patient_data_paths(data_dir):
pids = sorted(os.listdir(data_dir))
return [data_dir + '/' + p for p in pids]
def read_patient_annotations_luna(pid, directory):
return pickle.load(open(os.path.join(directory,pid+'.pkl'),"rb"))
def read_labels(file_path):
id2labels = {}
train_csv = open(file_path)
lines = train_csv.readlines()
i = 0
for item in lines:
if i == 0:
i = 1
continue
id, label = item.replace('\n', '').split(',')
id2labels[id] = int(label)
return id2labels
def read_test_labels(file_path):
id2labels = {}
train_csv = open(file_path)
lines = train_csv.readlines()
i = 0
for item in lines:
if i == 0:
i = 1
continue
id, label = item.replace('\n', '').split(';')
id2labels[id] = int(label)
return id2labels
def read_luna_annotations(file_path):
id2xyzd = defaultdict(list)
train_csv = open(file_path)
lines = train_csv.readlines()
i = 0
for item in lines:
if i == 0:
i = 1
continue
id, x, y, z, d = item.replace('\n', '').split(',')
id2xyzd[id].append([float(z), float(y), float(x), float(d)])
return id2xyzd
def read_luna_negative_candidates(file_path):
id2xyzd = defaultdict(list)
train_csv = open(file_path)
lines = train_csv.readlines()
i = 0
for item in lines:
if i == 0:
i = 1
continue
id, x, y, z, d = item.replace('\n', '').split(',')
if float(d) == 0:
id2xyzd[id].append([float(z), float(y), float(x), float(d)])
return id2xyzd
def write_submission(pid2prediction, submission_path):
"""
:param pid2prediction: dict of {patient_id: label}
:param submission_path:
"""
f = open(submission_path, 'w+')
fo = csv.writer(f, lineterminator='\n')
fo.writerow(['id', 'cancer'])
for pid in pid2prediction.keys():
fo.writerow([pid, pid2prediction[pid]])
f.close()
def filter_close_neighbors(candidates, min_dist=16):
#TODO pixelspacing should be added , it is now hardcoded
candidates_wo_dupes = set()
no_pairs = 0
for can1 in candidates:
found_close_candidate = False
swap_candidate = None
for can2 in candidates_wo_dupes:
if (can1 == can2).all():
raise "Candidate should not be in the target array yet"
else:
delta = can1[:3] - can2[:3]
delta[0] = 2.5*delta[0] #zyx coos
dist = np.sum(delta**2)**(1./2)
if dist<min_dist:
no_pairs += 1
print 'Warning: there is a pair nodules close together', can1[:3], can2[:3]
found_close_candidate = True
if can1[4]>can2[4]:
swap_candidate = can2
break
if not found_close_candidate:
candidates_wo_dupes.add(tuple(can1))
elif swap_candidate:
candidates_wo_dupes.remove(swap_candidate)
candidates_wo_dupes.add(tuple(can1))
print 'n candidates filtered out', no_pairs
return candidates_wo_dupes
def dice_index(predictions, targets, epsilon=1e-12):
predictions = np.asarray(predictions).flatten()
targets = np.asarray(targets).flatten()
dice = (2. * np.sum(targets * predictions) + epsilon) / (np.sum(predictions) + np.sum(targets) + epsilon)
return dice
def cross_entropy(predictions, targets, epsilon=1e-12):
predictions = np.asarray(predictions).flatten()
predictions = np.clip(predictions, epsilon, 1. - epsilon)
targets = np.asarray(targets).flatten()
ce = np.mean(np.log(predictions) * targets + np.log(1 - predictions) * (1. - targets))
return ce
def get_generated_pids(predictions_dir):
pids = []
if os.path.isdir(predictions_dir):
pids = os.listdir(predictions_dir)
pids = [extract_pid_filename(p) for p in pids]
return pids
def evaluate_log_loss(pid2prediction, pid2label):
predictions, labels = [], []
assert set(pid2prediction.keys()) == set(pid2label.keys())
for k, v in pid2prediction.iteritems():
predictions.append(v)
labels.append(pid2label[k])
return log_loss(labels, predictions)
def log_loss(y_real, y_pred, eps=1e-15):
y_pred = np.clip(y_pred, eps, 1 - eps)
y_real = np.array(y_real)
losses = y_real * np.log(y_pred) + (1 - y_real) * np.log(1 - y_pred)
return - np.average(losses)
def read_luna_properties(file_path):
id2xyzp = defaultdict(list)
train_csv = open(file_path)
lines = train_csv.readlines()
i = 0
for item in lines:
if i == 0:
i = 1
continue
annotation = item.replace('\n', '').split(',')
id = annotation[0]
x = float(annotation[1])
y = float(annotation[2])
z = float(annotation[3])
d = float(annotation[4])
properties_dict = {
'diameter': d,
'calcification': float(annotation[5]),
'internalStructure': float(annotation[6]),
'lobulation': float(annotation[7]),
'malignancy': float(annotation[8]),
'margin': float(annotation[9]),
'sphericity': float(annotation[10]),
'spiculation': float(annotation[11]),
'subtlety': float(annotation[12]),
'texture': float(annotation[13]),
}
id2xyzp[id].append([z, y, x, d, properties_dict])
return id2xyzp