-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
257 lines (208 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import warnings
warnings.filterwarnings("ignore")
import io
import os
import sys
import argparse
import random
import datetime
import time
from importlib import import_module
import torch
import torch.distributed as dist
from torch.distributed import get_world_size, get_rank
torch.backends.cudnn.benchmark = True
torch.manual_seed(123456)
random.seed(123456)
parser = argparse.ArgumentParser(description='Multi-Modal Training')
parser.add_argument('config', type=str, help='path to config file')
parser.add_argument('--local_rank', type=int)
parser.add_argument('--nproc_per_node', type=int)
args = parser.parse_args()
from utils.logging import MultiModalLogging
from utils.oss_op import save_model_to_oss, OssProxy
from utils.logging import AverageMeter
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
def train_epoch(ddp_model, optimizer, train_loader, epoch, dist_info, logger, amp_scaler, config, node_group, use_amp, iter_scheduler):
data_time_metric = AverageMeter('Data Time')
forward_time_metric = AverageMeter('Forward Time')
backward_time_metric = AverageMeter('Backward Time')
torch.cuda.synchronize()
t1 = time.time()
if hasattr(config, 'if_clip_grad') and config.if_clip_grad:
if_clip_grad = True
else:
if_clip_grad = False
if hasattr(config, 'use_bf16') and config.use_bf16:
use_bf16 = True
else:
use_bf16 = False
for batch_idx, batch_data in enumerate(train_loader):
torch.cuda.synchronize()
data_time = time.time() - t1
t1 = time.time()
log_info = {
'epoch': epoch,
'batch_idx': batch_idx,
'all_batch_cnt': len(train_loader)
}
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=use_amp, dtype=torch.bfloat16 if use_bf16 else torch.float16):
losses = ddp_model.forward(batch_data, dist_info, batch_idx % 10 == 0, log_info, phase='train', node_group=node_group)
torch.cuda.synchronize()
forward_time = time.time() - t1
t1 = time.time()
if isinstance(losses, list) or isinstance(losses, tuple):
raise NotImplementedError
else:
amp_scaler.scale(losses).backward()
if if_clip_grad:
amp_scaler.unscale_(optimizer)
if hasattr(config, 'grad_norm'):
total_norm = torch.nn.utils.clip_grad_norm_(ddp_model.parameters(), max_norm=config.grad_norm)
else:
total_norm = torch.nn.utils.clip_grad_norm_(ddp_model.parameters(), max_norm=1.0)
else:
total_norm = -1
amp_scaler.step(optimizer)
amp_scaler.update()
torch.cuda.synchronize()
backward_time = time.time() - t1
data_time_metric.update(data_time)
forward_time_metric.update(forward_time)
backward_time_metric.update(backward_time)
if batch_idx % 10 == 0:
if iter_scheduler is not None:
logger.info('Data Time: {:.3f}, Forward Time: {:.3f}, Backward Time: {:.3f}, amp: {:.5f}, grad_norm: {:.5f}, lr: {:.10f}'.format(
data_time_metric.avg, forward_time_metric.avg, backward_time_metric.avg, amp_scaler.get_scale(), total_norm, iter_scheduler.get_lr()[0]))
else:
logger.info('Data Time: {:.3f}, Forward Time: {:.3f}, Backward Time: {:.3f}, amp: {:.5f}, grad_norm: {:.5f}'.format(
data_time_metric.avg, forward_time_metric.avg, backward_time_metric.avg, amp_scaler.get_scale(), total_norm))
if batch_idx % 1000 == 0 and batch_idx != 0:
global_rank = dist_info['global_rank']
if global_rank == 0:
logger.info('saving models to oss')
save_model_to_oss('{}/epoch{}_{}_params.pth'.format(config.exp_dir, epoch, batch_idx), ddp_model)
save_model_to_oss('{}/epoch{}_{}_scaler.pth'.format(config.exp_dir, epoch, batch_idx), amp_scaler)
save_model_to_oss('{}/epoch{}_{}_opt.pth'.format(config.exp_dir, epoch, batch_idx), optimizer)
if iter_scheduler is not None:
save_model_to_oss('{}/epoch{}_{}_scheduler.pth'.format(config.exp_dir, epoch, batch_idx), iter_scheduler)
else:
logger.error('skip saving scheduler, because iter_scheduler is None')
if iter_scheduler is not None:
iter_scheduler.step()
t1 = time.time()
def worker_th_launch(local_rank, dist_world_size, global_rank):
dist.init_process_group(backend='nccl', timeout=datetime.timedelta(seconds=3600), world_size=dist_world_size, rank=global_rank)
config_dir = os.path.dirname(args.config)
config_name = os.path.basename(args.config).rsplit('.', 1)[0]
sys.path.insert(0, config_dir)
config = import_module(config_name)
logging = MultiModalLogging()
logging.add_std()
logging.add_oss(config.exp_dir)
logger = logging.get()
logger.info('exp_dir: {}'.format(config.exp_dir))
logger.info('GPU info: {}'.format(torch.cuda.get_device_name(0)))
logger.info('local_rank: {}, global_rank: {}, get_rank(): {}, dist_world_size: {}, get_world_size(): {}'.format(
local_rank, global_rank, get_rank(), dist_world_size, get_world_size()))
if hasattr(config, 'use_node_group') and config.use_node_group:
raise NotImplementedError()
else:
node_group = None
if hasattr(config, 'use_amp') and not config.use_amp:
use_amp = False
else:
use_amp = True
assert global_rank == get_rank()
assert dist_world_size == get_world_size()
dist_info = {
'local_rank': local_rank,
'global_rank': global_rank,
'dist_world_size': dist_world_size
}
torch.cuda.set_device(local_rank)
device = torch.device("cuda:{}".format(local_rank))
# init model here
model = config.model
logger.info('model nparams: {}'.format(sum(p.numel() for p in model.parameters())))
model.to(device)
# init tokenizer
text_tokenizer = config.text_tokenizer
if hasattr(config, 'find_unused_parameters') and config.find_unused_parameters:
ddp_model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], find_unused_parameters=True)
else:
ddp_model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank])
if hasattr(config, 'use_static_graph') and config.use_static_graph:
ddp_model._set_static_graph()
ddp_model.train()
optimizer = config.get_optimizer(ddp_model, logger)
if hasattr(config, 'use_iter_scheduler') and config.use_iter_scheduler:
iter_scheduler = config.get_scheduler(optimizer)
epoch_scheduler = None
else:
iter_scheduler = None
epoch_scheduler = config.get_scheduler(optimizer)
amp_scaler = torch.cuda.amp.GradScaler(enabled=use_amp)
if hasattr(config, 'resume'):
oss_proxy = OssProxy()
resume_params = torch.load(io.BytesIO(oss_proxy.download('{}_params.pth'.format(config.resume))), 'cpu')
ddp_model.load_state_dict(resume_params)
logger.info('load params from {}'.format('{}_params.pth'.format(config.resume)))
resume_opts = torch.load(io.BytesIO(oss_proxy.download('{}_opt.pth'.format(config.resume))), 'cpu')
optimizer.load_state_dict(resume_opts)
logger.info('load opts from {}'.format('{}_opt.pth'.format(config.resume)))
if use_amp:
resume_scaler = torch.load(io.BytesIO(oss_proxy.download('{}_scaler.pth'.format(config.resume))), 'cpu')
amp_scaler.load_state_dict(resume_scaler)
logger.info('load scaler from {}'.format('{}_scaler.pth'.format(config.resume)))
resume_scheduler = torch.load(io.BytesIO(oss_proxy.download('{}_scheduler.pth'.format(config.resume))), 'cpu')
if iter_scheduler is not None:
iter_scheduler.load_state_dict(resume_scheduler)
elif epoch_scheduler is not None:
epoch_scheduler.load_state_dict(resume_scheduler)
else:
raise ValueError('wrong scheduler')
logger.info('load scheduler from {}'.format('{}_scheduler.pth'.format(config.resume)))
resume_prefix = config.resume.split('/')[-1]
if '_' in resume_prefix:
resume_prefix = resume_prefix.split('_')[0]
config.start_epoch = int(resume_prefix.replace('epoch', '')) + 1
if hasattr(config, 'EPOCH'):
EPOCH = config.EPOCH
else:
EPOCH = 30
for epoch in range(config.start_epoch, EPOCH):
all_train_loaders = config.get_train_dataloader(epoch)
if epoch_scheduler is not None:
logger.info('epoch {} training starts, lr: {}'.format(epoch, epoch_scheduler.get_last_lr()))
ddp_model.train()
for train_loader, train_name in all_train_loaders:
if hasattr(config, 'use_sam') and config.use_sam:
train_epoch_sam(ddp_model, optimizer, train_loader, epoch, dist_info, logger, amp_scaler, config, node_group, use_amp, iter_scheduler)
else:
train_epoch(ddp_model, optimizer, train_loader, epoch, dist_info, logger, amp_scaler, config, node_group, use_amp, iter_scheduler)
if global_rank == 0:
logger.info('saving models to oss')
save_model_to_oss('{}/epoch{}_params.pth'.format(config.exp_dir, epoch), ddp_model)
save_model_to_oss('{}/epoch{}_scaler.pth'.format(config.exp_dir, epoch), amp_scaler)
save_model_to_oss('{}/epoch{}_opt.pth'.format(config.exp_dir, epoch), optimizer)
if iter_scheduler is not None:
save_model_to_oss('{}/epoch{}_scheduler.pth'.format(config.exp_dir, epoch), iter_scheduler)
elif epoch_scheduler is not None:
save_model_to_oss('{}/epoch{}_scheduler.pth'.format(config.exp_dir, epoch), epoch_scheduler)
else:
logger.error('skip saving scheduler, because both iter_scheduler and epoch_scheduler are None')
if epoch_scheduler is not None:
epoch_scheduler.step()
def worker(local_rank, ngpu, dist_world_size, node_rank):
global_rank = local_rank + node_rank * ngpu
worker_th_launch(local_rank, dist_world_size, global_rank)
if __name__ == '__main__':
print(os.environ["WORLD_SIZE"], os.environ["RANK"])
worker_th_launch(
local_rank=int(os.environ['LOCAL_RANK']),
dist_world_size=int(os.environ["WORLD_SIZE"]),
global_rank=int(os.environ["RANK"])
)