forked from Theano/Theano
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloop.txt
432 lines (316 loc) · 12.5 KB
/
loop.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
.. _tutloop:
====
Loop
====
Scan
====
- A general form of *recurrence*, which can be used for looping.
- *Reduction* and *map* (loop over the leading dimensions) are special cases of ``scan``.
- You ``scan`` a function along some input sequence, producing an output at each time-step.
- The function can see the *previous K time-steps* of your function.
- ``sum()`` could be computed by scanning the *z + x(i)* function over a list, given an initial state of *z=0*.
- Often a *for* loop can be expressed as a ``scan()`` operation, and ``scan`` is the closest that Theano comes to looping.
- Advantages of using ``scan`` over *for* loops:
- Number of iterations to be part of the symbolic graph.
- Minimizes GPU transfers (if GPU is involved).
- Computes gradients through sequential steps.
- Slightly faster than using a *for* loop in Python with a compiled Theano function.
- Can lower the overall memory usage by detecting the actual amount of memory needed.
The full documentation can be found in the library: :ref:`Scan <lib_scan>`.
**Scan Example: Computing tanh(x(t).dot(W) + b) elementwise**
.. testcode::
import theano
import theano.tensor as T
import numpy as np
# defining the tensor variables
X = T.matrix("X")
W = T.matrix("W")
b_sym = T.vector("b_sym")
results, updates = theano.scan(lambda v: T.tanh(T.dot(v, W) + b_sym), sequences=X)
compute_elementwise = theano.function(inputs=[X, W, b_sym], outputs=[results])
# test values
x = np.eye(2, dtype=theano.config.floatX)
w = np.ones((2, 2), dtype=theano.config.floatX)
b = np.ones((2), dtype=theano.config.floatX)
b[1] = 2
print(compute_elementwise(x, w, b)[0])
# comparison with numpy
print(np.tanh(x.dot(w) + b))
.. testoutput::
[[ 0.96402758 0.99505475]
[ 0.96402758 0.99505475]]
[[ 0.96402758 0.99505475]
[ 0.96402758 0.99505475]]
**Scan Example: Computing the sequence x(t) = tanh(x(t - 1).dot(W) + y(t).dot(U) + p(T - t).dot(V))**
.. testcode::
import theano
import theano.tensor as T
import numpy as np
# define tensor variables
X = T.vector("X")
W = T.matrix("W")
b_sym = T.vector("b_sym")
U = T.matrix("U")
Y = T.matrix("Y")
V = T.matrix("V")
P = T.matrix("P")
results, updates = theano.scan(lambda y, p, x_tm1: T.tanh(T.dot(x_tm1, W) + T.dot(y, U) + T.dot(p, V)),
sequences=[Y, P[::-1]], outputs_info=[X])
compute_seq = theano.function(inputs=[X, W, Y, U, P, V], outputs=[results])
# test values
x = np.zeros((2), dtype=theano.config.floatX)
x[1] = 1
w = np.ones((2, 2), dtype=theano.config.floatX)
y = np.ones((5, 2), dtype=theano.config.floatX)
y[0, :] = -3
u = np.ones((2, 2), dtype=theano.config.floatX)
p = np.ones((5, 2), dtype=theano.config.floatX)
p[0, :] = 3
v = np.ones((2, 2), dtype=theano.config.floatX)
print(compute_seq(x, w, y, u, p, v)[0])
# comparison with numpy
x_res = np.zeros((5, 2), dtype=theano.config.floatX)
x_res[0] = np.tanh(x.dot(w) + y[0].dot(u) + p[4].dot(v))
for i in range(1, 5):
x_res[i] = np.tanh(x_res[i - 1].dot(w) + y[i].dot(u) + p[4-i].dot(v))
print(x_res)
.. testoutput::
[[-0.99505475 -0.99505475]
[ 0.96471973 0.96471973]
[ 0.99998585 0.99998585]
[ 0.99998771 0.99998771]
[ 1. 1. ]]
[[-0.99505475 -0.99505475]
[ 0.96471973 0.96471973]
[ 0.99998585 0.99998585]
[ 0.99998771 0.99998771]
[ 1. 1. ]]
**Scan Example: Computing norms of lines of X**
.. testcode::
import theano
import theano.tensor as T
import numpy as np
# define tensor variable
X = T.matrix("X")
results, updates = theano.scan(lambda x_i: T.sqrt((x_i ** 2).sum()), sequences=[X])
compute_norm_lines = theano.function(inputs=[X], outputs=[results])
# test value
x = np.diag(np.arange(1, 6, dtype=theano.config.floatX), 1)
print(compute_norm_lines(x)[0])
# comparison with numpy
print(np.sqrt((x ** 2).sum(1)))
.. testoutput::
[ 1. 2. 3. 4. 5. 0.]
[ 1. 2. 3. 4. 5. 0.]
**Scan Example: Computing norms of columns of X**
.. testcode::
import theano
import theano.tensor as T
import numpy as np
# define tensor variable
X = T.matrix("X")
results, updates = theano.scan(lambda x_i: T.sqrt((x_i ** 2).sum()), sequences=[X.T])
compute_norm_cols = theano.function(inputs=[X], outputs=[results])
# test value
x = np.diag(np.arange(1, 6, dtype=theano.config.floatX), 1)
print(compute_norm_cols(x)[0])
# comparison with numpy
print(np.sqrt((x ** 2).sum(0)))
.. testoutput::
[ 0. 1. 2. 3. 4. 5.]
[ 0. 1. 2. 3. 4. 5.]
**Scan Example: Computing trace of X**
.. testcode::
import theano
import theano.tensor as T
import numpy as np
floatX = "float32"
# define tensor variable
X = T.matrix("X")
results, updates = theano.scan(lambda i, j, t_f: T.cast(X[i, j] + t_f, floatX),
sequences=[T.arange(X.shape[0]), T.arange(X.shape[1])],
outputs_info=np.asarray(0., dtype=floatX))
result = results[-1]
compute_trace = theano.function(inputs=[X], outputs=[result])
# test value
x = np.eye(5, dtype=theano.config.floatX)
x[0] = np.arange(5, dtype=theano.config.floatX)
print(compute_trace(x)[0])
# comparison with numpy
print(np.diagonal(x).sum())
.. testoutput::
4.0
4.0
**Scan Example: Computing the sequence x(t) = x(t - 2).dot(U) + x(t - 1).dot(V) + tanh(x(t - 1).dot(W) + b)**
.. testcode::
import theano
import theano.tensor as T
import numpy as np
# define tensor variables
X = T.matrix("X")
W = T.matrix("W")
b_sym = T.vector("b_sym")
U = T.matrix("U")
V = T.matrix("V")
n_sym = T.iscalar("n_sym")
results, updates = theano.scan(lambda x_tm2, x_tm1: T.dot(x_tm2, U) + T.dot(x_tm1, V) + T.tanh(T.dot(x_tm1, W) + b_sym),
n_steps=n_sym, outputs_info=[dict(initial=X, taps=[-2, -1])])
compute_seq2 = theano.function(inputs=[X, U, V, W, b_sym, n_sym], outputs=[results])
# test values
x = np.zeros((2, 2), dtype=theano.config.floatX) # the initial value must be able to return x[-2]
x[1, 1] = 1
w = 0.5 * np.ones((2, 2), dtype=theano.config.floatX)
u = 0.5 * (np.ones((2, 2), dtype=theano.config.floatX) - np.eye(2, dtype=theano.config.floatX))
v = 0.5 * np.ones((2, 2), dtype=theano.config.floatX)
n = 10
b = np.ones((2), dtype=theano.config.floatX)
print(compute_seq2(x, u, v, w, b, n))
# comparison with numpy
x_res = np.zeros((10, 2))
x_res[0] = x[0].dot(u) + x[1].dot(v) + np.tanh(x[1].dot(w) + b)
x_res[1] = x[1].dot(u) + x_res[0].dot(v) + np.tanh(x_res[0].dot(w) + b)
x_res[2] = x_res[0].dot(u) + x_res[1].dot(v) + np.tanh(x_res[1].dot(w) + b)
for i in range(2, 10):
x_res[i] = (x_res[i - 2].dot(u) + x_res[i - 1].dot(v) +
np.tanh(x_res[i - 1].dot(w) + b))
print(x_res)
.. testoutput::
[array([[ 1.40514825, 1.40514825],
[ 2.88898899, 2.38898899],
[ 4.34018291, 4.34018291],
[ 6.53463142, 6.78463142],
[ 9.82972243, 9.82972243],
[ 14.22203814, 14.09703814],
[ 20.07439936, 20.07439936],
[ 28.12291843, 28.18541843],
[ 39.1913681 , 39.1913681 ],
[ 54.28407732, 54.25282732]])]
[[ 1.40514825 1.40514825]
[ 2.88898899 2.38898899]
[ 4.34018291 4.34018291]
[ 6.53463142 6.78463142]
[ 9.82972243 9.82972243]
[ 14.22203814 14.09703814]
[ 20.07439936 20.07439936]
[ 28.12291843 28.18541843]
[ 39.1913681 39.1913681 ]
[ 54.28407732 54.25282732]]
**Scan Example: Computing the Jacobian of y = tanh(v.dot(A)) wrt x**
.. testcode::
import theano
import theano.tensor as T
import numpy as np
# define tensor variables
v = T.vector()
A = T.matrix()
y = T.tanh(T.dot(v, A))
results, updates = theano.scan(lambda i: T.grad(y[i], v), sequences=[T.arange(y.shape[0])])
compute_jac_t = theano.function([A, v], [results], allow_input_downcast=True) # shape (d_out, d_in)
# test values
x = np.eye(5, dtype=theano.config.floatX)[0]
w = np.eye(5, 3, dtype=theano.config.floatX)
w[2] = np.ones((3), dtype=theano.config.floatX)
print compute_jac_t(w, x)[0]
# compare with numpy
print(((1 - np.tanh(x.dot(w)) ** 2) * w).T)
.. testoutput::
[[ 0.41997434 0. 0.41997434 0. 0. ]
[ 0. 1. 1. 0. 0. ]
[ 0. 0. 1. 0. 0. ]]
[[ 0.41997434 0. 0.41997434 0. 0. ]
[ 0. 1. 1. 0. 0. ]
[ 0. 0. 1. 0. 0. ]]
Note that we need to iterate over the indices of ``y`` and not over the elements of ``y``. The reason is that scan create a placeholder variable for its internal function and this placeholder variable does not have the same dependencies than the variables that will replace it.
**Scan Example: Accumulate number of loop during a scan**
.. testcode::
import theano
import theano.tensor as T
import numpy as np
# define shared variables
k = theano.shared(0)
n_sym = T.iscalar("n_sym")
results, updates = theano.scan(lambda:{k:(k + 1)}, n_steps=n_sym)
accumulator = theano.function([n_sym], [], updates=updates, allow_input_downcast=True)
k.get_value()
accumulator(5)
k.get_value()
**Scan Example: Computing tanh(v.dot(W) + b) * d where d is binomial**
.. testcode::
import theano
import theano.tensor as T
import numpy as np
# define tensor variables
X = T.matrix("X")
W = T.matrix("W")
b_sym = T.vector("b_sym")
# define shared random stream
trng = T.shared_randomstreams.RandomStreams(1234)
d=trng.binomial(size=W[1].shape)
results, updates = theano.scan(lambda v: T.tanh(T.dot(v, W) + b_sym) * d, sequences=X)
compute_with_bnoise = theano.function(inputs=[X, W, b_sym], outputs=[results],
updates=updates, allow_input_downcast=True)
x = np.eye(10, 2, dtype=theano.config.floatX)
w = np.ones((2, 2), dtype=theano.config.floatX)
b = np.ones((2), dtype=theano.config.floatX)
print(compute_with_bnoise(x, w, b))
.. testoutput::
[array([[ 0.96402758, 0. ],
[ 0. , 0.96402758],
[ 0. , 0. ],
[ 0.76159416, 0.76159416],
[ 0.76159416, 0. ],
[ 0. , 0.76159416],
[ 0. , 0.76159416],
[ 0. , 0.76159416],
[ 0. , 0. ],
[ 0.76159416, 0.76159416]])]
Note that if you want to use a random variable ``d`` that will not be updated through scan loops, you should pass this variable as a ``non_sequences`` arguments.
**Scan Example: Computing pow(A, k)**
.. testcode::
import theano
import theano.tensor as T
theano.config.warn.subtensor_merge_bug = False
k = T.iscalar("k")
A = T.vector("A")
def inner_fct(prior_result, B):
return prior_result * B
# Symbolic description of the result
result, updates = theano.scan(fn=inner_fct,
outputs_info=T.ones_like(A),
non_sequences=A, n_steps=k)
# Scan has provided us with A ** 1 through A ** k. Keep only the last
# value. Scan notices this and does not waste memory saving them.
final_result = result[-1]
power = theano.function(inputs=[A, k], outputs=final_result,
updates=updates)
print(power(range(10), 2))
.. testoutput::
[ 0. 1. 4. 9. 16. 25. 36. 49. 64. 81.]
**Scan Example: Calculating a Polynomial**
.. testcode::
import numpy
import theano
import theano.tensor as T
theano.config.warn.subtensor_merge_bug = False
coefficients = theano.tensor.vector("coefficients")
x = T.scalar("x")
max_coefficients_supported = 10000
# Generate the components of the polynomial
full_range=theano.tensor.arange(max_coefficients_supported)
components, updates = theano.scan(fn=lambda coeff, power, free_var:
coeff * (free_var ** power),
outputs_info=None,
sequences=[coefficients, full_range],
non_sequences=x)
polynomial = components.sum()
calculate_polynomial = theano.function(inputs=[coefficients, x],
outputs=polynomial)
test_coeff = numpy.asarray([1, 0, 2], dtype=numpy.float32)
print calculate_polynomial(test_coeff, 3)
.. testoutput::
19.0
Exercise
========
Run both examples.
Modify and execute the polynomial example to have the reduction done by ``scan``.
:download:`Solution<loop_solution_1.py>`