forked from d4nst/RotNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
441 lines (350 loc) · 13.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
from __future__ import division
import math
import cv2
import numpy as np
import matplotlib.pyplot as plt
from keras.preprocessing.image import Iterator
from keras.utils.np_utils import to_categorical
import keras.backend as K
def angle_difference(x, y):
"""
Calculate minimum difference between two angles.
"""
return 180 - abs(abs(x - y) - 180)
def angle_error(y_true, y_pred):
"""
Calculate the mean diference between the true angles
and the predicted angles. Each angle is represented
as a binary vector.
"""
diff = angle_difference(K.argmax(y_true), K.argmax(y_pred))
return K.mean(K.cast(K.abs(diff), K.floatx()))
def angle_error_regression(y_true, y_pred):
"""
Calculate the mean diference between the true angles
and the predicted angles. Each angle is represented
as a float number between 0 and 1.
"""
return K.mean(angle_difference(y_true * 360, y_pred * 360))
def binarize_images(x):
"""
Convert images to range 0-1 and binarize them by making
0 the values below 0.1 and 1 the values above 0.1.
"""
x /= 255
x[x >= 0.1] = 1
x[x < 0.1] = 0
return x
def rotate(image, angle):
"""
Rotates an OpenCV 2 / NumPy image about it's centre by the given angle
(in degrees). The returned image will be large enough to hold the entire
new image, with a black background
Source: http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders
"""
# Get the image size
# No that's not an error - NumPy stores image matricies backwards
image_size = (image.shape[1], image.shape[0])
image_center = tuple(np.array(image_size) / 2)
# Convert the OpenCV 3x2 rotation matrix to 3x3
rot_mat = np.vstack(
[cv2.getRotationMatrix2D(image_center, angle, 1.0), [0, 0, 1]]
)
rot_mat_notranslate = np.matrix(rot_mat[0:2, 0:2])
# Shorthand for below calcs
image_w2 = image_size[0] * 0.5
image_h2 = image_size[1] * 0.5
# Obtain the rotated coordinates of the image corners
rotated_coords = [
(np.array([-image_w2, image_h2]) * rot_mat_notranslate).A[0],
(np.array([ image_w2, image_h2]) * rot_mat_notranslate).A[0],
(np.array([-image_w2, -image_h2]) * rot_mat_notranslate).A[0],
(np.array([ image_w2, -image_h2]) * rot_mat_notranslate).A[0]
]
# Find the size of the new image
x_coords = [pt[0] for pt in rotated_coords]
x_pos = [x for x in x_coords if x > 0]
x_neg = [x for x in x_coords if x < 0]
y_coords = [pt[1] for pt in rotated_coords]
y_pos = [y for y in y_coords if y > 0]
y_neg = [y for y in y_coords if y < 0]
right_bound = max(x_pos)
left_bound = min(x_neg)
top_bound = max(y_pos)
bot_bound = min(y_neg)
new_w = int(abs(right_bound - left_bound))
new_h = int(abs(top_bound - bot_bound))
# We require a translation matrix to keep the image centred
trans_mat = np.matrix([
[1, 0, int(new_w * 0.5 - image_w2)],
[0, 1, int(new_h * 0.5 - image_h2)],
[0, 0, 1]
])
# Compute the tranform for the combined rotation and translation
affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :]
# Apply the transform
result = cv2.warpAffine(
image,
affine_mat,
(new_w, new_h),
flags=cv2.INTER_LINEAR
)
return result
def largest_rotated_rect(w, h, angle):
"""
Given a rectangle of size wxh that has been rotated by 'angle' (in
radians), computes the width and height of the largest possible
axis-aligned rectangle within the rotated rectangle.
Original JS code by 'Andri' and Magnus Hoff from Stack Overflow
Converted to Python by Aaron Snoswell
Source: http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders
"""
quadrant = int(math.floor(angle / (math.pi / 2))) & 3
sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
alpha = (sign_alpha % math.pi + math.pi) % math.pi
bb_w = w * math.cos(alpha) + h * math.sin(alpha)
bb_h = w * math.sin(alpha) + h * math.cos(alpha)
gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)
delta = math.pi - alpha - gamma
length = h if (w < h) else w
d = length * math.cos(alpha)
a = d * math.sin(alpha) / math.sin(delta)
y = a * math.cos(gamma)
x = y * math.tan(gamma)
return (
bb_w - 2 * x,
bb_h - 2 * y
)
def crop_around_center(image, width, height):
"""
Given a NumPy / OpenCV 2 image, crops it to the given width and height,
around it's centre point
Source: http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders
"""
image_size = (image.shape[1], image.shape[0])
image_center = (int(image_size[0] * 0.5), int(image_size[1] * 0.5))
if(width > image_size[0]):
width = image_size[0]
if(height > image_size[1]):
height = image_size[1]
x1 = int(image_center[0] - width * 0.5)
x2 = int(image_center[0] + width * 0.5)
y1 = int(image_center[1] - height * 0.5)
y2 = int(image_center[1] + height * 0.5)
return image[y1:y2, x1:x2]
def crop_largest_rectangle(image, angle, height, width):
"""
Crop around the center the largest possible rectangle
found with largest_rotated_rect.
"""
return crop_around_center(
image,
*largest_rotated_rect(
width,
height,
math.radians(angle)
)
)
def generate_rotated_image(image, angle, size=None, crop_center=False,
crop_largest_rect=False):
"""
Generate a valid rotated image for the RotNetDataGenerator. If the
image is rectangular, the crop_center option should be used to make
it square. To crop out the black borders after rotation, use the
crop_largest_rect option. To resize the final image, use the size
option.
"""
height, width = image.shape[:2]
if crop_center:
if width < height:
height = width
else:
width = height
image = rotate(image, angle)
if crop_largest_rect:
image = crop_largest_rectangle(image, angle, height, width)
if size:
image = cv2.resize(image, size)
return image
class RotNetDataGenerator(Iterator):
"""
Given a NumPy array of images or a list of image paths,
generate batches of rotated images and rotation angles on-the-fly.
"""
def __init__(self, input, input_shape=None, color_mode='rgb', batch_size=64,
one_hot=True, preprocess_func=None, rotate=True, crop_center=False,
crop_largest_rect=False, shuffle=False, seed=None):
self.images = None
self.filenames = None
self.input_shape = input_shape
self.color_mode = color_mode
self.batch_size = batch_size
self.one_hot = one_hot
self.preprocess_func = preprocess_func
self.rotate = rotate
self.crop_center = crop_center
self.crop_largest_rect = crop_largest_rect
self.shuffle = shuffle
if self.color_mode not in {'rgb', 'grayscale'}:
raise ValueError('Invalid color mode:', self.color_mode,
'; expected "rgb" or "grayscale".')
# check whether the input is a NumPy array or a list of paths
if isinstance(input, (np.ndarray)):
self.images = input
N = self.images.shape[0]
if not self.input_shape:
self.input_shape = self.images.shape[1:]
# add dimension if the images are greyscale
if len(self.input_shape) == 2:
self.input_shape = self.input_shape + (1,)
else:
self.filenames = input
N = len(self.filenames)
super(RotNetDataGenerator, self).__init__(N, batch_size, shuffle, seed)
def _get_batches_of_transformed_samples(self, index_array):
# create array to hold the images
batch_x = np.zeros((len(index_array),) + self.input_shape, dtype='float32')
# create array to hold the labels
batch_y = np.zeros(len(index_array), dtype='float32')
# iterate through the current batch
for i, j in enumerate(index_array):
if self.filenames is None:
image = self.images[j]
else:
is_color = int(self.color_mode == 'rgb')
image = cv2.imread(self.filenames[j], is_color)
if is_color:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if self.rotate:
# get a random angle
rotation_angle = np.random.randint(360)
else:
rotation_angle = 0
# generate the rotated image
rotated_image = generate_rotated_image(
image,
rotation_angle,
size=self.input_shape[:2],
crop_center=self.crop_center,
crop_largest_rect=self.crop_largest_rect
)
# add dimension to account for the channels if the image is greyscale
if rotated_image.ndim == 2:
rotated_image = np.expand_dims(rotated_image, axis=2)
# store the image and label in their corresponding batches
batch_x[i] = rotated_image
batch_y[i] = rotation_angle
if self.one_hot:
# convert the numerical labels to binary labels
batch_y = to_categorical(batch_y, 360)
else:
batch_y /= 360
# preprocess input images
if self.preprocess_func:
batch_x = self.preprocess_func(batch_x)
return batch_x, batch_y
def next(self):
with self.lock:
# get input data index and size of the current batch
index_array = next(self.index_generator)
# create array to hold the images
return self._get_batches_of_transformed_samples(index_array)
def display_examples(model, input, num_images=5, size=None, crop_center=False,
crop_largest_rect=False, preprocess_func=None, save_path=None):
"""
Given a model that predicts the rotation angle of an image,
and a NumPy array of images or a list of image paths, display
the specified number of example images in three columns:
Original, Rotated and Corrected.
"""
if isinstance(input, (np.ndarray)):
images = input
N, h, w = images.shape[:3]
if not size:
size = (h, w)
indexes = np.random.choice(N, num_images)
images = images[indexes, ...]
else:
images = []
filenames = input
N = len(filenames)
indexes = np.random.choice(N, num_images)
for i in indexes:
image = cv2.imread(filenames[i])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
images.append(image)
images = np.asarray(images)
x = []
y = []
for image in images:
rotation_angle = np.random.randint(360)
rotated_image = generate_rotated_image(
image,
rotation_angle,
size=size,
crop_center=crop_center,
crop_largest_rect=crop_largest_rect
)
x.append(rotated_image)
y.append(rotation_angle)
x = np.asarray(x, dtype='float32')
y = np.asarray(y, dtype='float32')
if x.ndim == 3:
x = np.expand_dims(x, axis=3)
y = to_categorical(y, 360)
x_rot = np.copy(x)
if preprocess_func:
x = preprocess_func(x)
y = np.argmax(y, axis=1)
y_pred = np.argmax(model.predict(x), axis=1)
plt.figure(figsize=(10.0, 2 * num_images))
title_fontdict = {
'fontsize': 14,
'fontweight': 'bold'
}
fig_number = 0
for rotated_image, true_angle, predicted_angle in zip(x_rot, y, y_pred):
original_image = rotate(rotated_image, -true_angle)
if crop_largest_rect:
original_image = crop_largest_rectangle(original_image, -true_angle, *size)
corrected_image = rotate(rotated_image, -predicted_angle)
if crop_largest_rect:
corrected_image = crop_largest_rectangle(corrected_image, -predicted_angle, *size)
if x.shape[3] == 1:
options = {'cmap': 'gray'}
else:
options = {}
fig_number += 1
ax = plt.subplot(num_images, 3, fig_number)
if fig_number == 1:
plt.title('Original\n', fontdict=title_fontdict)
plt.imshow(np.squeeze(original_image).astype('uint8'), **options)
plt.axis('off')
fig_number += 1
ax = plt.subplot(num_images, 3, fig_number)
if fig_number == 2:
plt.title('Rotated\n', fontdict=title_fontdict)
ax.text(
0.5, 1.03, 'Angle: {0}'.format(true_angle),
horizontalalignment='center',
transform=ax.transAxes,
fontsize=11
)
plt.imshow(np.squeeze(rotated_image).astype('uint8'), **options)
plt.axis('off')
fig_number += 1
ax = plt.subplot(num_images, 3, fig_number)
corrected_angle = angle_difference(predicted_angle, true_angle)
if fig_number == 3:
plt.title('Corrected\n', fontdict=title_fontdict)
ax.text(
0.5, 1.03, 'Angle: {0}'.format(corrected_angle),
horizontalalignment='center',
transform=ax.transAxes,
fontsize=11
)
plt.imshow(np.squeeze(corrected_image).astype('uint8'), **options)
plt.axis('off')
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
if save_path:
plt.savefig(save_path)