-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
290 lines (219 loc) · 7.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import dataloader
from graphwriter.graphwriter import GraphWriter
from config import C
import constants as Con
import torch as tc
import torch.nn as nn
import dgl
import pdb
import time
import math
import random
import numpy as np
import os
import pickle
from YTools.universe.timer import Timer
from tqdm import tqdm
from transformers.optimization import WarmupLinearSchedule , WarmupCosineSchedule
if C.log_file_name:
if os.path.exists(C.save):
os.system("rm -rf %s" % C.save)
os.makedirs(C.save , exist_ok = True)
log_fil = open(C.log_file_name , "w")
start_time = time.time()
def gettime():
return time.time() - start_time
def lprint(*args,**kwargs):
print (*args,**kwargs)
if C.log_file_name:
for x in args:
log_fil.write(str(x) + "\n")
log_fil.flush()
lprint (C.info)
def pad_string(string , pad_idx = 0):
'''
string: (bsz , string_len)
'''
if string is None:
return None
lenmax = max([len(x) for x in string])
for i in range(len(string)):
string[i] += [pad_idx] * (lenmax - len(string[i]))
return string
def get_a_batch(data , batch_n , device = None):
if device is None:
device = C.gpus[0]
dat = data[batch_n * C.batch_size : (batch_n+1) * C.batch_size]
g = dgl.batch ([x["g" ] for x in dat])
title = pad_string([x["title" ] for x in dat])
decoder_inp = pad_string([x["decoder_inp" ] for x in dat])
gold = pad_string([x["gold" ] for x in dat])
ent_names = []
ent_lens = []
rels = []
ent_idx = []
rel_idx = []
glob_idx = []
ent_idx_b = []
accumed_num = 0
for x in dat:
ent_names += x["ent_names"]
ent_lens += [len(y) for y in x["ent_names"]]
rels += x["rels"]
ent_idx_b.append([])
for i in x["idx_ent"]:
ent_idx.append(i + accumed_num)
ent_idx_b[-1].append(i + accumed_num)
for i in x["idx_rel"]:
rel_idx.append(i + accumed_num)
glob_idx.append(x["idx_glob"] + accumed_num)
accumed_num += len(x["idx_ent"]) + len(x["idx_rel"]) + 1
ent_names = pad_string(ent_names)
ent_idx_b = pad_string(ent_idx_b , pad_idx = -1)
return (
[g , title , ent_names , ent_lens , rels , ent_idx , rel_idx , glob_idx , decoder_inp , ent_idx_b] ,
gold ,
)
def valid(net):
#net = net.eval()
loss_func = nn.NLLLoss(ignore_index = 0)
valid_data = data[C.dev_data]
step = 0
tot_loss = 0
batch_number = (len(valid_data) // C.batch_size) + int((len(valid_data) % C.batch_size) != 0)
pbar = tqdm(range(batch_number) , ncols = 70)
for batch_n in pbar:
pbar.set_description_str("(Test)")
#-----------------get data-----------------
inputs = []
golds = []
for data_device in C.gpus:
inp , gold = get_a_batch(valid_data , batch_n , data_device)
inputs.append(inp)
golds.append(gold)
assert len(inputs) == len(golds)
#------------------repadding-----------------
maxlen_gold = max([ max( [len(x) for x in gold] ) for gold in golds])
for _i in range(len(inputs)):
for _j in range(len(golds[_i])): #batch
inputs[_i][-2][_j] += [0] * (maxlen_gold - len(golds[_i][_j]))
golds[_i][_j] += [0] * (maxlen_gold - len(golds[_i][_j]))
golds[_i] = tc.LongTensor(golds[_i]).cuda(C.gpus[_i])
for _j in range(1,len(inputs[_i])): #first one is graph
inputs[_i][_j] = tc.LongTensor(inputs[_i][_j]).cuda(C.gpus[_i])
#-----------------get output-----------------
if len(inputs) == 1:
y = net(*inputs[0] , attn_method = C.attn_method)
gold = golds[0]
else:
replicas = net.replicate(net.module, net.device_ids[:len(inputs)])
outputs = net.parallel_apply(replicas, inputs, [{"attn_method" :C.attn_method}] * len(inputs))
#pdb.set_trace()
y = tc.cat([x.to(C.gpus[0]) for x in outputs] , dim = 0)
gold = tc.cat([x.to(C.gpus[0]) for x in golds] , dim = 0)
#-----------------get loss-----------------
y = tc.log(y).view(-1 , y.size(-1))
gold = gold.view(-1)
loss = loss_func(y , gold.view(-1))
tot_loss += float(loss)
step += 1
pbar.set_postfix_str("loss: %.4f , avg_loss: %.4f" % (float(loss) , tot_loss / step))
lprint ("valid end. valid loss = %.6f , ppl = %.6f" % (tot_loss / step , math.exp(tot_loss / step)))
#net = net.train()
def train(net):
train_starttime = gettime()
train_data = data[C.train_data]
batch_number = (len(train_data) // C.batch_size) + int((len(train_data) % C.batch_size) != 0)
optim = tc.optim.Adam(params = net.parameters() , lr = C.lr)
sched = WarmupLinearSchedule(optim , warmup_steps = 400 , t_total = batch_number * C.epoch_number)
loss_func = nn.NLLLoss(ignore_index = 0)
step = 0
tot_loss = 0
for epoch_n in range(C.epoch_number):
lprint ("epoch %d started." % (epoch_n))
pbar = tqdm(range(batch_number) , ncols = 70)
for batch_n in pbar:
pbar.set_description_str("(Train)Epoch %d" % (epoch_n+1))
#-----------------get data-----------------
inputs = []
golds = []
for data_device in C.gpus:
inp , gold = get_a_batch(train_data , batch_n , data_device)
inputs.append(inp)
golds.append(gold)
#------------------repadding-----------------
maxlen_gold = max([ max( [len(x) for x in gold] ) for gold in golds])
for _i in range(len(inputs)):
for _j in range(len(golds[_i])): #batch
inputs[_i][-2][_j] += [0] * (maxlen_gold - len(golds[_i][_j]))
golds[_i][_j] += [0] * (maxlen_gold - len(golds[_i][_j]))
golds[_i] = tc.LongTensor(golds[_i]).cuda(C.gpus[_i])
for _j in range(1,len(inputs[_i])): #first one is graph
inputs[_i][_j] = tc.LongTensor(inputs[_i][_j]).cuda(C.gpus[_i])
#-----------------get output-----------------
if len(inputs) == 1:
y = net(*inputs[0] , attn_method = C.attn_method)
gold = golds[0]
else:
replicas = net.replicate(net.module, net.device_ids[:len(inputs)])
outputs = net.parallel_apply(replicas, inputs, [{"attn_method" :C.attn_method}] * len(inputs))
y = tc.cat([x.to(C.gpus[0]) for x in outputs] , dim = 0)
gold = tc.cat([x.to(C.gpus[0]) for x in golds] , dim = 0)
#-----------------get loss-----------------
y = tc.log(y).view(-1 , y.size(-1))
gold = gold.view(-1)
loss = loss_func(y , gold.view(-1))
tot_loss += float(loss)
step += 1
#-----------------back prop-----------------
#if step % C.update_freq == 0:
if True:
optim.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(net.parameters(),C.clip)
optim.step()
sched.step()
pbar.set_postfix_str("loss: %.4f , avg_loss: %.4f" % (float(loss) , tot_loss / step))
lprint ("epoch %d ended." % (epoch_n))
valid(net)
save_path = os.path.join(C.save , "epoch_%d.pkl" % epoch_n)
if C.save:
if len(C.gpus) > 1:
_net = net.module
else:
net = net.cpu()
_net = net
with open(save_path , "wb") as fil:
pickle.dump( [_net , epoch_n+1 , optim] , fil )
if len(C.gpus) == 1:
net = net.cuda(C.gpus[0])
os.system("cp %s %s/last.pkl" % (save_path , C.save))
lprint ("saved...")
lprint ("tot train time = %.2fs" % (gettime() - train_starttime))
if __name__ == "__main__":
lprint ("--------------------args------------------")
for x in C.__dict__:
lprint ("%s : %s" % (x , repr(C.__dict__[x])))
lprint ("------------------------------------------\n")
if C.seed > 0:
random.seed(C.seed)
np.random.seed(C.seed)
tc.manual_seed(C.seed)
tc.cuda.set_device(C.gpus[0])
data = dataloader.run(name = C.name , force_reprocess = C.force_reprocess)
lprint ("got data.")
lprint ("size of train/valid/test = %d / %d / %d" % (len(data["train"]) , len(data["valid"]) , len(data["test"])))
sort_idx = data["sort_idx"].cuda(C.gpus[0])
net = GraphWriter(
vocab = data["vocab"] ,
entity_number = Con.max_entity_per_string ,
dropout = C.dropout ,
sort_idx = sort_idx ,
)
net = net.cuda(C.gpus[0])
if len(C.gpus) > 1:
net = nn.DataParallel(net , C.gpus)
lprint ("start Training")
train(net)
if C.log_file_name:
log_fil.close()