-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathospf_spf.c
2073 lines (1759 loc) · 55.7 KB
/
ospf_spf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0-or-later
/* OSPF SPF calculation.
* Copyright (C) 1999, 2000 Kunihiro Ishiguro, Toshiaki Takada
*/
#include <zebra.h>
#include "monotime.h"
#include "frrevent.h"
#include "memory.h"
#include "hash.h"
#include "linklist.h"
#include "prefix.h"
#include "if.h"
#include "table.h"
#include "log.h"
#include "sockunion.h" /* for inet_ntop () */
#include "ospfd/ospfd.h"
#include "ospfd/ospf_interface.h"
#include "ospfd/ospf_ism.h"
#include "ospfd/ospf_asbr.h"
#include "ospfd/ospf_lsa.h"
#include "ospfd/ospf_lsdb.h"
#include "ospfd/ospf_neighbor.h"
#include "ospfd/ospf_nsm.h"
#include "ospfd/ospf_spf.h"
#include "ospfd/ospf_route.h"
#include "ospfd/ospf_ia.h"
#include "ospfd/ospf_ase.h"
#include "ospfd/ospf_abr.h"
#include "ospfd/ospf_dump.h"
#include "ospfd/ospf_sr.h"
#include "ospfd/ospf_ti_lfa.h"
#include "ospfd/ospf_errors.h"
#ifdef SUPPORT_OSPF_API
#include "ospfd/ospf_apiserver.h"
#endif
/* Variables to ensure a SPF scheduled log message is printed only once */
static unsigned int spf_reason_flags = 0;
/* dummy vertex to flag "in spftree" */
static const struct vertex vertex_in_spftree = {};
#define LSA_SPF_IN_SPFTREE (struct vertex *)&vertex_in_spftree
#define LSA_SPF_NOT_EXPLORED NULL
static void ospf_clear_spf_reason_flags(void)
{
spf_reason_flags = 0;
}
static void ospf_spf_set_reason(ospf_spf_reason_t reason)
{
spf_reason_flags |= 1 << reason;
}
static void ospf_vertex_free(void *);
/*
* Heap related functions, for the managment of the candidates, to
* be used with pqueue.
*/
static int vertex_cmp(const struct vertex *v1, const struct vertex *v2)
{
if (v1->distance != v2->distance)
return v1->distance - v2->distance;
if (v1->type != v2->type) {
switch (v1->type) {
case OSPF_VERTEX_NETWORK:
return -1;
case OSPF_VERTEX_ROUTER:
return 1;
}
}
return 0;
}
DECLARE_SKIPLIST_NONUNIQ(vertex_pqueue, struct vertex, pqi, vertex_cmp);
static void lsdb_clean_stat(struct ospf_lsdb *lsdb)
{
struct route_table *table;
struct route_node *rn;
struct ospf_lsa *lsa;
int i;
for (i = OSPF_MIN_LSA; i < OSPF_MAX_LSA; i++) {
table = lsdb->type[i].db;
for (rn = route_top(table); rn; rn = route_next(rn))
if ((lsa = (rn->info)) != NULL)
lsa->stat = LSA_SPF_NOT_EXPLORED;
}
}
static struct vertex_nexthop *vertex_nexthop_new(void)
{
return XCALLOC(MTYPE_OSPF_NEXTHOP, sizeof(struct vertex_nexthop));
}
static void vertex_nexthop_free(struct vertex_nexthop *nh)
{
XFREE(MTYPE_OSPF_NEXTHOP, nh);
}
/*
* Free the canonical nexthop objects for an area, ie the nexthop objects
* attached to the first-hop router vertices, and any intervening network
* vertices.
*/
static void ospf_canonical_nexthops_free(struct vertex *root)
{
struct listnode *node, *nnode;
struct vertex *child;
for (ALL_LIST_ELEMENTS(root->children, node, nnode, child)) {
struct listnode *n2, *nn2;
struct vertex_parent *vp;
/*
* router vertices through an attached network each
* have a distinct (canonical / not inherited) nexthop
* which must be freed.
*
* A network vertex can only have router vertices as its
* children, so only one level of recursion is possible.
*/
if (child->type == OSPF_VERTEX_NETWORK)
ospf_canonical_nexthops_free(child);
/* Free child nexthops pointing back to this root vertex */
for (ALL_LIST_ELEMENTS(child->parents, n2, nn2, vp)) {
if (vp->parent == root && vp->nexthop) {
vertex_nexthop_free(vp->nexthop);
vp->nexthop = NULL;
if (vp->local_nexthop) {
vertex_nexthop_free(vp->local_nexthop);
vp->local_nexthop = NULL;
}
}
}
}
}
/*
* TODO: Parent list should be excised, in favour of maintaining only
* vertex_nexthop, with refcounts.
*/
static struct vertex_parent *vertex_parent_new(struct vertex *v, int backlink,
struct vertex_nexthop *hop,
struct vertex_nexthop *lhop)
{
struct vertex_parent *new;
new = XMALLOC(MTYPE_OSPF_VERTEX_PARENT, sizeof(struct vertex_parent));
new->parent = v;
new->backlink = backlink;
new->nexthop = hop;
new->local_nexthop = lhop;
return new;
}
static void vertex_parent_free(struct vertex_parent *p)
{
vertex_nexthop_free(p->local_nexthop);
vertex_nexthop_free(p->nexthop);
XFREE(MTYPE_OSPF_VERTEX_PARENT, p);
}
int vertex_parent_cmp(void *aa, void *bb)
{
struct vertex_parent *a = aa, *b = bb;
return IPV4_ADDR_CMP(&a->nexthop->router, &b->nexthop->router);
}
static struct vertex *ospf_vertex_new(struct ospf_area *area,
struct ospf_lsa *lsa)
{
struct vertex *new;
new = XCALLOC(MTYPE_OSPF_VERTEX, sizeof(struct vertex));
new->flags = 0;
new->type = lsa->data->type;
new->id = lsa->data->id;
new->lsa = lsa->data;
new->children = list_new();
new->parents = list_new();
new->parents->del = (void (*)(void *))vertex_parent_free;
new->parents->cmp = vertex_parent_cmp;
new->lsa_p = lsa;
lsa->stat = new;
listnode_add(area->spf_vertex_list, new);
if (IS_DEBUG_OSPF_EVENT)
zlog_debug("%s: Created %s vertex %pI4", __func__,
new->type == OSPF_VERTEX_ROUTER ? "Router"
: "Network",
&new->lsa->id);
return new;
}
static void ospf_vertex_free(void *data)
{
struct vertex *v = data;
if (IS_DEBUG_OSPF_EVENT)
zlog_debug("%s: Free %s vertex %pI4", __func__,
v->type == OSPF_VERTEX_ROUTER ? "Router" : "Network",
&v->lsa->id);
if (v->children)
list_delete(&v->children);
if (v->parents)
list_delete(&v->parents);
v->lsa = NULL;
XFREE(MTYPE_OSPF_VERTEX, v);
}
static void ospf_vertex_dump(const char *msg, struct vertex *v,
int print_parents, int print_children)
{
if (!IS_DEBUG_OSPF_EVENT)
return;
zlog_debug("%s %s vertex %pI4 distance %u flags %u", msg,
v->type == OSPF_VERTEX_ROUTER ? "Router" : "Network",
&v->lsa->id, v->distance, (unsigned int)v->flags);
if (print_parents) {
struct listnode *node;
struct vertex_parent *vp;
for (ALL_LIST_ELEMENTS_RO(v->parents, node, vp)) {
if (vp) {
zlog_debug(
"parent %pI4 backlink %d nexthop %pI4 lsa pos %d",
&vp->parent->lsa->id, vp->backlink,
&vp->nexthop->router,
vp->nexthop->lsa_pos);
}
}
}
if (print_children) {
struct listnode *cnode;
struct vertex *cv;
for (ALL_LIST_ELEMENTS_RO(v->children, cnode, cv))
ospf_vertex_dump(" child:", cv, 0, 0);
}
}
/* Add a vertex to the list of children in each of its parents. */
static void ospf_vertex_add_parent(struct vertex *v)
{
struct vertex_parent *vp;
struct listnode *node;
assert(v && v->parents);
for (ALL_LIST_ELEMENTS_RO(v->parents, node, vp)) {
assert(vp->parent && vp->parent->children);
/* No need to add two links from the same parent. */
if (listnode_lookup(vp->parent->children, v) == NULL)
listnode_add(vp->parent->children, v);
}
}
/* Find a vertex according to its router id */
struct vertex *ospf_spf_vertex_find(struct in_addr id, struct list *vertex_list)
{
struct listnode *node;
struct vertex *found;
for (ALL_LIST_ELEMENTS_RO(vertex_list, node, found)) {
if (found->id.s_addr == id.s_addr)
return found;
}
return NULL;
}
/* Find a vertex parent according to its router id */
struct vertex_parent *ospf_spf_vertex_parent_find(struct in_addr id,
struct vertex *vertex)
{
struct listnode *node;
struct vertex_parent *found;
for (ALL_LIST_ELEMENTS_RO(vertex->parents, node, found)) {
if (found->parent->id.s_addr == id.s_addr)
return found;
}
return NULL;
}
struct vertex *ospf_spf_vertex_by_nexthop(struct vertex *root,
struct in_addr *nexthop)
{
struct listnode *node;
struct vertex *child;
struct vertex_parent *vertex_parent;
for (ALL_LIST_ELEMENTS_RO(root->children, node, child)) {
vertex_parent = ospf_spf_vertex_parent_find(root->id, child);
if (vertex_parent->nexthop->router.s_addr == nexthop->s_addr)
return child;
}
return NULL;
}
/* Create a deep copy of a SPF vertex without children and parents */
static struct vertex *ospf_spf_vertex_copy(struct vertex *vertex)
{
struct vertex *copy;
copy = XCALLOC(MTYPE_OSPF_VERTEX, sizeof(struct vertex));
memcpy(copy, vertex, sizeof(struct vertex));
copy->parents = list_new();
copy->parents->del = (void (*)(void *))vertex_parent_free;
copy->parents->cmp = vertex_parent_cmp;
copy->children = list_new();
return copy;
}
/* Create a deep copy of a SPF vertex_parent */
static struct vertex_parent *
ospf_spf_vertex_parent_copy(struct vertex_parent *vertex_parent)
{
struct vertex_parent *vertex_parent_copy;
struct vertex_nexthop *nexthop_copy, *local_nexthop_copy;
vertex_parent_copy =
XCALLOC(MTYPE_OSPF_VERTEX, sizeof(struct vertex_parent));
nexthop_copy = vertex_nexthop_new();
local_nexthop_copy = vertex_nexthop_new();
memcpy(vertex_parent_copy, vertex_parent, sizeof(struct vertex_parent));
memcpy(nexthop_copy, vertex_parent->nexthop,
sizeof(struct vertex_nexthop));
memcpy(local_nexthop_copy, vertex_parent->local_nexthop,
sizeof(struct vertex_nexthop));
vertex_parent_copy->nexthop = nexthop_copy;
vertex_parent_copy->local_nexthop = local_nexthop_copy;
return vertex_parent_copy;
}
/* Create a deep copy of a SPF tree */
void ospf_spf_copy(struct vertex *vertex, struct list *vertex_list)
{
struct listnode *node;
struct vertex *vertex_copy, *child, *child_copy, *parent_copy;
struct vertex_parent *vertex_parent, *vertex_parent_copy;
/* First check if the node is already in the vertex list */
vertex_copy = ospf_spf_vertex_find(vertex->id, vertex_list);
if (!vertex_copy) {
vertex_copy = ospf_spf_vertex_copy(vertex);
listnode_add(vertex_list, vertex_copy);
}
/* Copy all parents, create parent nodes if necessary */
for (ALL_LIST_ELEMENTS_RO(vertex->parents, node, vertex_parent)) {
parent_copy = ospf_spf_vertex_find(vertex_parent->parent->id,
vertex_list);
if (!parent_copy) {
parent_copy =
ospf_spf_vertex_copy(vertex_parent->parent);
listnode_add(vertex_list, parent_copy);
}
vertex_parent_copy = ospf_spf_vertex_parent_copy(vertex_parent);
vertex_parent_copy->parent = parent_copy;
listnode_add(vertex_copy->parents, vertex_parent_copy);
}
/* Copy all children, create child nodes if necessary */
for (ALL_LIST_ELEMENTS_RO(vertex->children, node, child)) {
child_copy = ospf_spf_vertex_find(child->id, vertex_list);
if (!child_copy) {
child_copy = ospf_spf_vertex_copy(child);
listnode_add(vertex_list, child_copy);
}
listnode_add(vertex_copy->children, child_copy);
}
/* Finally continue copying with child nodes */
for (ALL_LIST_ELEMENTS_RO(vertex->children, node, child))
ospf_spf_copy(child, vertex_list);
}
static void ospf_spf_remove_branch(struct vertex_parent *vertex_parent,
struct vertex *child,
struct list *vertex_list)
{
struct listnode *node, *nnode, *inner_node, *inner_nnode;
struct vertex *grandchild;
struct vertex_parent *vertex_parent_found;
bool has_more_links = false;
/*
* First check if there are more nexthops for that parent to that child
*/
for (ALL_LIST_ELEMENTS_RO(child->parents, node, vertex_parent_found)) {
if (vertex_parent_found->parent->id.s_addr
== vertex_parent->parent->id.s_addr
&& vertex_parent_found->nexthop->router.s_addr
!= vertex_parent->nexthop->router.s_addr)
has_more_links = true;
}
/*
* No more links from that parent? Then delete the child from its
* children list.
*/
if (!has_more_links)
listnode_delete(vertex_parent->parent->children, child);
/*
* Delete the vertex_parent from the child parents list, this needs to
* be done anyway.
*/
listnode_delete(child->parents, vertex_parent);
/*
* Are there actually more parents left? If not, then delete the child!
* This is done by recursively removing the links to the grandchildren,
* such that finally the child can be removed without leaving unused
* partial branches.
*/
if (child->parents->count == 0) {
for (ALL_LIST_ELEMENTS(child->children, node, nnode,
grandchild)) {
for (ALL_LIST_ELEMENTS(grandchild->parents, inner_node,
inner_nnode,
vertex_parent_found)) {
ospf_spf_remove_branch(vertex_parent_found,
grandchild, vertex_list);
}
}
listnode_delete(vertex_list, child);
ospf_vertex_free(child);
}
}
static int ospf_spf_remove_link(struct vertex *vertex, struct list *vertex_list,
struct router_lsa_link *link)
{
struct listnode *node, *inner_node;
struct vertex *child;
struct vertex_parent *vertex_parent;
/*
* Identify the node who shares a subnet (given by the link) with a
* child and remove the branch of this particular child.
*/
for (ALL_LIST_ELEMENTS_RO(vertex->children, node, child)) {
for (ALL_LIST_ELEMENTS_RO(child->parents, inner_node,
vertex_parent)) {
if ((vertex_parent->local_nexthop->router.s_addr
& link->link_data.s_addr)
== (link->link_id.s_addr
& link->link_data.s_addr)) {
ospf_spf_remove_branch(vertex_parent, child,
vertex_list);
return 0;
}
}
}
/* No link found yet, move on recursively */
for (ALL_LIST_ELEMENTS_RO(vertex->children, node, child)) {
if (ospf_spf_remove_link(child, vertex_list, link) == 0)
return 0;
}
/* link was not removed yet */
return 1;
}
void ospf_spf_remove_resource(struct vertex *vertex, struct list *vertex_list,
struct protected_resource *resource)
{
struct listnode *node, *nnode;
struct vertex *found;
struct vertex_parent *vertex_parent;
switch (resource->type) {
case OSPF_TI_LFA_LINK_PROTECTION:
ospf_spf_remove_link(vertex, vertex_list, resource->link);
break;
case OSPF_TI_LFA_NODE_PROTECTION:
found = ospf_spf_vertex_find(resource->router_id, vertex_list);
if (!found)
break;
/*
* Remove the node by removing all links from its parents. Note
* that the child is automatically removed here with the last
* link from a parent, hence no explicit removal of the node.
*/
for (ALL_LIST_ELEMENTS(found->parents, node, nnode,
vertex_parent))
ospf_spf_remove_branch(vertex_parent, found,
vertex_list);
break;
case OSPF_TI_LFA_UNDEFINED_PROTECTION:
/* do nothing */
break;
}
}
static void ospf_spf_init(struct ospf_area *area, struct ospf_lsa *root_lsa,
bool is_dry_run, bool is_root_node)
{
struct list *vertex_list;
struct vertex *v;
/* Create vertex list */
vertex_list = list_new();
vertex_list->del = ospf_vertex_free;
area->spf_vertex_list = vertex_list;
/* Create root node. */
v = ospf_vertex_new(area, root_lsa);
area->spf = v;
area->spf_dry_run = is_dry_run;
area->spf_root_node = is_root_node;
/* Reset ABR and ASBR router counts. */
area->abr_count = 0;
area->asbr_count = 0;
}
/* return index of link back to V from W, or -1 if no link found */
static int ospf_lsa_has_link(struct lsa_header *w, struct lsa_header *v)
{
unsigned int i, length;
struct router_lsa *rl;
struct network_lsa *nl;
/* In case of W is Network LSA. */
if (w->type == OSPF_NETWORK_LSA) {
if (v->type == OSPF_NETWORK_LSA)
return -1;
nl = (struct network_lsa *)w;
length = (ntohs(w->length) - OSPF_LSA_HEADER_SIZE - 4) / 4;
for (i = 0; i < length; i++)
if (IPV4_ADDR_SAME(&nl->routers[i], &v->id))
return i;
return -1;
}
/* In case of W is Router LSA. */
if (w->type == OSPF_ROUTER_LSA) {
rl = (struct router_lsa *)w;
length = ntohs(w->length);
for (i = 0; i < ntohs(rl->links)
&& length >= sizeof(struct router_lsa);
i++, length -= 12) {
switch (rl->link[i].type) {
case LSA_LINK_TYPE_POINTOPOINT:
case LSA_LINK_TYPE_VIRTUALLINK:
/* Router LSA ID. */
if (v->type == OSPF_ROUTER_LSA
&& IPV4_ADDR_SAME(&rl->link[i].link_id,
&v->id)) {
return i;
}
break;
case LSA_LINK_TYPE_TRANSIT:
/* Network LSA ID. */
if (v->type == OSPF_NETWORK_LSA
&& IPV4_ADDR_SAME(&rl->link[i].link_id,
&v->id)) {
return i;
}
break;
case LSA_LINK_TYPE_STUB:
/* Stub can't lead anywhere, carry on */
continue;
default:
break;
}
}
}
return -1;
}
/*
* Find the next link after prev_link from v to w. If prev_link is
* NULL, return the first link from v to w. Ignore stub and virtual links;
* these link types will never be returned.
*/
static struct router_lsa_link *
ospf_get_next_link(struct vertex *v, struct vertex *w,
struct router_lsa_link *prev_link)
{
uint8_t *p;
uint8_t *lim;
uint8_t lsa_type = LSA_LINK_TYPE_TRANSIT;
struct router_lsa_link *l;
if (w->type == OSPF_VERTEX_ROUTER)
lsa_type = LSA_LINK_TYPE_POINTOPOINT;
if (prev_link == NULL)
p = ((uint8_t *)v->lsa) + OSPF_LSA_HEADER_SIZE + 4;
else {
p = (uint8_t *)prev_link;
p += (OSPF_ROUTER_LSA_LINK_SIZE
+ (prev_link->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
}
lim = ((uint8_t *)v->lsa) + ntohs(v->lsa->length);
while (p < lim) {
l = (struct router_lsa_link *)p;
p += (OSPF_ROUTER_LSA_LINK_SIZE
+ (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
if (l->m[0].type != lsa_type)
continue;
if (IPV4_ADDR_SAME(&l->link_id, &w->id))
return l;
}
return NULL;
}
static void ospf_spf_flush_parents(struct vertex *w)
{
struct vertex_parent *vp;
struct listnode *ln, *nn;
/* delete the existing nexthops */
for (ALL_LIST_ELEMENTS(w->parents, ln, nn, vp)) {
list_delete_node(w->parents, ln);
vertex_parent_free(vp);
}
}
/*
* Consider supplied next-hop for inclusion to the supplied list of
* equal-cost next-hops, adjust list as necessary.
*
* Returns vertex parent pointer if created otherwise `NULL` if it already
* exists.
*/
static struct vertex_parent *ospf_spf_add_parent(struct vertex *v,
struct vertex *w,
struct vertex_nexthop *newhop,
struct vertex_nexthop *newlhop,
unsigned int distance)
{
struct vertex_parent *vp, *wp;
struct listnode *node;
/* we must have a newhop, and a distance */
assert(v && w && newhop);
assert(distance);
/*
* IFF w has already been assigned a distance, then we shouldn't get
* here unless callers have determined V(l)->W is shortest /
* equal-shortest path (0 is a special case distance (no distance yet
* assigned)).
*/
if (w->distance)
assert(distance <= w->distance);
else
w->distance = distance;
if (IS_DEBUG_OSPF_EVENT)
zlog_debug("%s: Adding %pI4 as parent of %pI4", __func__,
&v->lsa->id, &w->lsa->id);
/*
* Adding parent for a new, better path: flush existing parents from W.
*/
if (distance < w->distance) {
if (IS_DEBUG_OSPF_EVENT)
zlog_debug(
"%s: distance %d better than %d, flushing existing parents",
__func__, distance, w->distance);
ospf_spf_flush_parents(w);
w->distance = distance;
}
/*
* new parent is <= existing parents, add it to parent list (if nexthop
* not on parent list)
*/
for (ALL_LIST_ELEMENTS_RO(w->parents, node, wp)) {
if (memcmp(newhop, wp->nexthop, sizeof(*newhop)) == 0) {
if (IS_DEBUG_OSPF_EVENT)
zlog_debug(
"%s: ... nexthop already on parent list, skipping add",
__func__);
return NULL;
}
}
vp = vertex_parent_new(v, ospf_lsa_has_link(w->lsa, v->lsa), newhop,
newlhop);
listnode_add_sort(w->parents, vp);
return vp;
}
static int match_stub_prefix(struct lsa_header *lsa, struct in_addr v_link_addr,
struct in_addr w_link_addr)
{
uint8_t *p, *lim;
struct router_lsa_link *l = NULL;
struct in_addr masked_lsa_addr;
if (lsa->type != OSPF_ROUTER_LSA)
return 0;
p = ((uint8_t *)lsa) + OSPF_LSA_HEADER_SIZE + 4;
lim = ((uint8_t *)lsa) + ntohs(lsa->length);
while (p < lim) {
l = (struct router_lsa_link *)p;
p += (OSPF_ROUTER_LSA_LINK_SIZE
+ (l->m[0].tos_count * OSPF_ROUTER_LSA_TOS_SIZE));
if (l->m[0].type != LSA_LINK_TYPE_STUB)
continue;
masked_lsa_addr.s_addr =
(l->link_id.s_addr & l->link_data.s_addr);
/* check that both links belong to the same stub subnet */
if ((masked_lsa_addr.s_addr
== (v_link_addr.s_addr & l->link_data.s_addr))
&& (masked_lsa_addr.s_addr
== (w_link_addr.s_addr & l->link_data.s_addr)))
return 1;
}
return 0;
}
/*
* 16.1.1. Calculate nexthop from root through V (parent) to
* vertex W (destination), with given distance from root->W.
*
* The link must be supplied if V is the root vertex. In all other cases
* it may be NULL.
*
* Note that this function may fail, hence the state of the destination
* vertex, W, should /not/ be modified in a dependent manner until
* this function returns. This function will update the W vertex with the
* provided distance as appropriate.
*/
static unsigned int ospf_nexthop_calculation(struct ospf_area *area,
struct vertex *v, struct vertex *w,
struct router_lsa_link *l,
unsigned int distance, int lsa_pos)
{
struct listnode *node, *nnode;
struct vertex_nexthop *nh, *lnh;
struct vertex_parent *vp;
unsigned int added = 0;
if (IS_DEBUG_OSPF_EVENT) {
zlog_debug("%s: Start", __func__);
ospf_vertex_dump("V (parent):", v, 1, 1);
ospf_vertex_dump("W (dest) :", w, 1, 1);
zlog_debug("V->W distance: %d", distance);
}
if (v == area->spf) {
/*
* 16.1.1 para 4. In the first case, the parent vertex (V) is
* the root (the calculating router itself). This means that
* the destination is either a directly connected network or
* directly connected router. The outgoing interface in this
* case is simply the OSPF interface connecting to the
* destination network/router.
*/
/* we *must* be supplied with the link data */
assert(l != NULL);
if (IS_DEBUG_OSPF_EVENT)
zlog_debug(
"%s: considering link type:%d link_id:%pI4 link_data:%pI4",
__func__, l->m[0].type, &l->link_id,
&l->link_data);
if (w->type == OSPF_VERTEX_ROUTER) {
/*
* l is a link from v to w l2 will be link from w to v
*/
struct router_lsa_link *l2 = NULL;
if (l->m[0].type == LSA_LINK_TYPE_POINTOPOINT) {
struct ospf_interface *oi = NULL;
struct in_addr nexthop = {.s_addr = 0};
if (area->spf_root_node) {
oi = ospf_if_lookup_by_lsa_pos(area,
lsa_pos);
if (!oi) {
zlog_debug(
"%s: OI not found in LSA: lsa_pos: %d link_id:%pI4 link_data:%pI4",
__func__, lsa_pos,
&l->link_id,
&l->link_data);
return 0;
}
}
/*
* If the destination is a router which connects
* to the calculating router via a
* Point-to-MultiPoint network, the
* destination's next hop IP address(es) can be
* determined by examining the destination's
* router-LSA: each link pointing back to the
* calculating router and having a Link Data
* field belonging to the Point-to-MultiPoint
* network provides an IP address of the next
* hop router.
*
* At this point l is a link from V to W, and V
* is the root ("us"). If it is a point-to-
* multipoint interface, then look through the
* links in the opposite direction (W to V).
* If any of them have an address that lands
* within the subnet declared by the PtMP link,
* then that link is a constituent of the PtMP
* link, and its address is a nexthop address
* for V.
*
* Note for point-to-point interfaces:
*
* Having nexthop = 0 (as proposed in the RFC)
* is tempting, but NOT acceptable. It breaks
* AS-External routes with a forwarding address,
* since ospf_ase_complete_direct_routes() will
* mistakenly assume we've reached the last hop
* and should place the forwarding address as
* nexthop. Also, users may configure multi-
* access links in p2p mode, so we need the IP
* to ARP the nexthop.
*
* If the calculating router is the SPF root
* node and the link is P2P then access the
* interface information directly. This can be
* crucial when e.g. IP unnumbered is used
* where 'correct' nexthop information are not
* available via Router LSAs.
*
* Otherwise handle P2P and P2MP the same way
* as described above using a reverse lookup to
* figure out the nexthop.
*/
/*
* HACK: we don't know (yet) how to distinguish
* between P2P and P2MP interfaces by just
* looking at LSAs, which is important for
* TI-LFA since you want to do SPF calculations
* from the perspective of other nodes. Since
* TI-LFA is currently not implemented for P2MP
* we just check here if it is enabled and then
* blindly assume that P2P is used. Ultimately
* the interface code needs to be removed
* somehow.
*/
if (area->ospf->ti_lfa_enabled
|| (oi && oi->type == OSPF_IFTYPE_POINTOPOINT)
|| (oi && oi->type == OSPF_IFTYPE_POINTOMULTIPOINT
&& oi->address->prefixlen == IPV4_MAX_BITLEN)) {
struct ospf_neighbor *nbr_w = NULL;
/* Calculating node is root node, link
* is P2P */
if (area->spf_root_node) {
nbr_w = ospf_nbr_lookup_by_routerid(
oi->nbrs, &l->link_id);
if (nbr_w) {
added = 1;
nexthop = nbr_w->src;
}
}
/* Reverse lookup */
if (!added) {
while ((l2 = ospf_get_next_link(
w, v, l2))) {
if (match_stub_prefix(
v->lsa,
l->link_data,
l2->link_data)) {
added = 1;
nexthop =
l2->link_data;
break;
}
}
}
} else if (oi && oi->type
== OSPF_IFTYPE_POINTOMULTIPOINT) {
struct prefix_ipv4 la;
la.family = AF_INET;
la.prefixlen = oi->address->prefixlen;
/*
* V links to W on PtMP interface;
* find the interface address on W
*/
while ((l2 = ospf_get_next_link(w, v,
l2))) {
la.prefix = l2->link_data;
if (prefix_cmp((struct prefix
*)&la,
oi->address)
!= 0)
continue;
added = 1;
nexthop = l2->link_data;
break;
}
}
if (added) {
nh = vertex_nexthop_new();
nh->router = nexthop;
nh->lsa_pos = lsa_pos;
/*
* Since v is the root the nexthop and
* local nexthop are the same.
*/
lnh = vertex_nexthop_new();
memcpy(lnh, nh,
sizeof(struct vertex_nexthop));
if (ospf_spf_add_parent(v, w, nh, lnh,
distance) ==
NULL) {
vertex_nexthop_free(nh);
vertex_nexthop_free(lnh);
}
return 1;
} else
zlog_info(
"%s: could not determine nexthop for link %s",
__func__, oi ? oi->ifp->name : "");
} /* end point-to-point link from V to W */
else if (l->m[0].type == LSA_LINK_TYPE_VIRTUALLINK) {
/*
* VLink implementation limitations:
* a) vl_data can only reference one nexthop,
* so no ECMP to backbone through VLinks.
* Though transit-area summaries may be
* considered, and those can be ECMP.
* b) We can only use /one/ VLink, even if
* multiple ones exist this router through
* multiple transit-areas.
*/
struct ospf_vl_data *vl_data;
vl_data = ospf_vl_lookup(area->ospf, NULL,