-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathadv_q_rk.F
244 lines (201 loc) · 7 KB
/
adv_q_rk.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
!/===========================================================================/
! Copyright (c) 2007, The University of Massachusetts Dartmouth
! Produced at the School of Marine Science & Technology
! Marine Ecosystem Dynamics Modeling group
! All rights reserved.
!
! FVCOM has been developed by the joint UMASSD-WHOI research team. For
! details of authorship and attribution of credit please see the FVCOM
! technical manual or contact the MEDM group.
!
!
! This file is part of FVCOM. For details, see http://fvcom.smast.umassd.edu
! The full copyright notice is contained in the file COPYRIGHT located in the
! root directory of the FVCOM code. This original header must be maintained
! in all distributed versions.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
! THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED.
!
!/---------------------------------------------------------------------------/
! CVS VERSION INFORMATION
! $Id$
! $Name$
! $Revision$
!/===========================================================================/
!==============================================================================|
! Calculate the Turbulent Kinetic Energy and Mixing Length Based on |
! The Mellor-Yamada Level 2.5 Turbulent Closure Model |
!==============================================================================|
SUBROUTINE ADV_Q_RK(Q,QB,QF)
!------------------------------------------------------------------------------|
USE MOD_UTILS
USE ALL_VARS
USE MOD_PAR
USE MOD_WD
USE MOD_SPHERICAL
USE MOD_NORTHPOLE
IMPLICIT NONE
REAL(SP), DIMENSION(0:MT,KB) :: Q,QB,QF,XFLUX
REAL(SP), DIMENSION(0:MT) :: PUPX,PUPY,PVPX,PVPY
REAL(SP), DIMENSION(0:MT) :: PQPX,PQPY,PQPXD,PQPYD,VISCOFF
REAL(SP), DIMENSION(3*(NT),KBM1) :: DTIJ
REAL(SP), DIMENSION(3*(NT),KBM1) :: UVN
REAL(SP) :: UTMP,VTMP,SITAI,FFD,FF1 !,X11,Y11,X22,Y22,X33,Y33,TMP1,TMP2,XI,YI
REAL(SP) :: DXA,DYA,DXB,DYB,FIJ1,FIJ2,UN
REAL(SP) :: TXX,TYY,FXX,FYY,VISCOF,EXFLUX,TEMP,STPOINT
REAL(SP) :: FACT,FM1
INTEGER :: I,I1,I2,IA,IB,J,J1,J2,K,JTMP,JJ,II
REAL(SP) :: Q1MIN, Q1MAX, Q2MIN, Q2MAX
REAL(SP) :: QMEAN1
REAL(SP), DIMENSION(0:NT,KB) :: UQ,VQ
REAL(SP), ALLOCATABLE :: UQ1(:,:),VQ1(:,:)
IF(DBG_SET(DBG_SBR)) WRITE(IPT,*) "Start: adv_q"
!------------------------------------------------------------------------------!
QMEAN1 = 1.E-8
ALLOCATE(UQ1(0,0))
ALLOCATE(VQ1(0,0))
SELECT CASE(HORIZONTAL_MIXING_TYPE)
CASE ('closure')
FACT = 1.0_SP
FM1 = 0.0_SP
CASE('constant')
FACT = 0.0_SP
FM1 = 1.0_SP
CASE DEFAULT
CALL FATAL_ERROR("UNKNOW HORIZONTAL MIXING TYPE:",&
& TRIM(HORIZONTAL_MIXING_TYPE) )
END SELECT
!
!--Initialize Fluxes-----------------------------------------------------------!
!
QF = 0.0_SP
XFLUX = 0.0_SP
UQ = 0.0_SP
VQ = 0.0_SP
UVN = 0.0_SP
DO K=2,KBM1
DO I=1,NT
UQ(I,K) = (U(I,K)*DZ1(I,K-1)+U(I,K-1)*DZ1(I,K))/(DZ1(I,K)+DZ1(I,K-1))
VQ(I,K) = (V(I,K)*DZ1(I,K-1)+V(I,K-1)*DZ1(I,K))/(DZ1(I,K)+DZ1(I,K-1))
END DO
END DO
!
!--Loop Over Control Volume Sub-Edges And Calculate Normal Velocity------------!
!
DO I=1,NCV
I1=NTRG(I)
DO K=2,KBM1
DTIJ(I,K)=DT1(I1)*DZZ1(I1,K-1)
UVN(I,K) = VQ(I1,K)*DLTXE(I) - UQ(I1,K)*DLTYE(I)
END DO
END DO
!
!--Calculate the Advection and Horizontal Diffusion Terms----------------------!
!
DO K=2,KBM1
PQPX = 0.0_SP
PQPY = 0.0_SP
PQPXD = 0.0_SP
PQPYD = 0.0_SP
DO I=1,M
DO J=1,NTSN(I)-1
I1=NBSN(I,J)
I2=NBSN(I,J+1)
FFD=0.5_SP*(Q(I1,K)+Q(I2,K)-QMEAN1-QMEAN1)
FF1=0.5_SP*(Q(I1,K)+Q(I2,K))
PQPX(I)=PQPX(I)+FF1*DLTYTRIE(i,j)
PQPY(I)=PQPY(I)+FF1*DLTXTRIE(i,j)
PQPXD(I)=PQPXD(I)+FFD*DLTYTRIE(i,j)
PQPYD(I)=PQPYD(I)+FFD*DltXTRIE(i,j)
END DO
PQPX(I)=PQPX(I)/ART2(I)
PQPY(I)=PQPY(I)/ART2(I)
PQPXD(I)=PQPXD(I)/ART2(I)
PQPYD(I)=PQPYD(I)/ART2(I)
END DO
DO I=1,M
VISCOFF(I) = (VISCOFH(I,K)*DZ(I,K-1)+VISCOFH(I,K-1)*DZ(I,K))/ &
(DZ(I,K)+DZ(I,K-1))
END DO
DO I=1,NCV_I
IA=NIEC(I,1)
IB=NIEC(I,2)
FIJ1=Q(IA,K)+DLTXNCVE(I,1)*PQPX(IA)+DLTYNCVE(I,1)*PQPY(IA)
FIJ2=Q(IB,K)+DLTXNCVE(I,2)*PQPX(IB)+DLTYNCVE(I,2)*PQPY(IB)
Q1MIN=MINVAL(Q(NBSN(IA,1:NTSN(IA)-1),K))
Q1MIN=MIN(Q1MIN, Q(IA,K))
Q1MAX=MAXVAL(Q(NBSN(IA,1:NTSN(IA)-1),K))
Q1MAX=MAX(Q1MAX, Q(IA,K))
Q2MIN=MINVAL(Q(NBSN(IB,1:NTSN(IB)-1),K))
Q2MIN=MIN(Q2MIN, Q(IB,K))
Q2MAX=MAXVAL(Q(NBSN(IB,1:NTSN(IB)-1),K))
Q2MAX=MAX(Q2MAX, Q(IB,K))
IF(FIJ1 < Q1MIN) FIJ1=Q1MIN
IF(FIJ1 > Q1MAX) FIJ1=Q1MAX
IF(FIJ2 < Q2MIN) FIJ2=Q2MIN
IF(FIJ2 > Q2MAX) FIJ2=Q2MAX
UN=UVN(I,K)
! David moved HPRNU and added HVC
VISCOF=(FACT*0.5_SP*(VISCOFF(IA)*NN_HVC(IA)+VISCOFF(IB)*NN_HVC(IB)) + FM1*0.5_SP*(NN_HVC(IA)+NN_HVC(IB)))/HPRNU
TXX=0.5_SP*(PQPXD(IA)+PQPXD(IB))*VISCOF
TYY=0.5_SP*(PQPYD(IA)+PQPYD(IB))*VISCOF
FXX=-DTIJ(I,K)*TXX*DLTYE(I)
FYY= DTIJ(I,K)*TYY*DLTXE(I)
EXFLUX=-UN*DTIJ(I,K)* &
((1.0_SP+SIGN(1.0_SP,UN))*FIJ2+(1.0_SP-SIGN(1.0_SP,UN))*FIJ1)*0.5_SP+FXX+FYY
XFLUX(IA,K)=XFLUX(IA,K)+EXFLUX
XFLUX(IB,K)=XFLUX(IB,K)-EXFLUX
END DO
# if defined (SPHERICAL)
CALL ADV_Q_XY(XFLUX,PQPX,PQPY,PQPXD,PQPYD,VISCOFF,Q,UQ,VQ,K,UQ1,VQ1,0.0_SP)
# endif
END DO !!SIGMA LOOP
!
!-Accumulate Fluxes at Boundary Nodes
!
# if defined (MULTIPROCESSOR)
IF(PAR)CALL NODE_MATCH(0,NBN,BN_MLT,BN_LOC,BNC,MT,KB,MYID,NPROCS,XFLUX)
# endif
!--------------------------------------------------------------------
! The central difference scheme in vertical advection
!--------------------------------------------------------------------
DO K=2,KBM1
DO I=1,M
# if defined (WET_DRY)
IF(ISWETN(I)*ISWETNT(I) == 1) THEN
# endif
TEMP=WTS(I,K-1)*Q(I,K-1)-WTS(I,K+1)*Q(I,K+1)
XFLUX(I,K)=XFLUX(I,K)+TEMP*ART1(I)*DZZ(I,K-1)/(DZ(I,K-1)+DZ(I,K))
# if defined (WET_DRY)
END IF
# endif
END DO
END DO !! SIGMA LOOP
!
!--Update Q or QL-------------------------------------------------------------!
!
# if defined (WET_DRY)
DO I=1,M
IF(ISWETN(I)*ISWETNT(I) == 1 )THEN
DO K=2,KBM1
QF(I,K)=(QB(I,K)-XFLUX(I,K)/ART1(I)*(DTI/(DT(I)*DZZ(I,k-1))))*(DT(I)/D(I))
END DO
ELSE
DO K=2,KBM1
QF(I,K)=QB(I,K)
END DO
END IF
END DO
# else
DO I=1,M
DO K=2,KBM1
QF(I,K)=(QB(I,K)-XFLUX(I,K)/ART1(I)*(DTI/(DT(I)*DZZ(I,k-1))))*(DT(I)/D(I))
END DO
END DO
# endif
IF(DBG_SET(DBG_SBR)) WRITE(IPT,*) "End: adv_q_rk"
END SUBROUTINE ADV_Q_RK
!==============================================================================|