forked from uzh-rpg/svit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vit-adapter-s-3x.py
102 lines (101 loc) · 3.56 KB
/
vit-adapter-s-3x.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright (c) Shanghai AI Lab. All rights reserved.
_base_ = [
'../_base_/models/mask_rcnn_r50_fpn.py',
'../_base_/datasets/coco_instance.py',
'../_base_/schedules/schedule_3x.py',
'../_base_/default_runtime.py'
]
# pretrained = 'https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'
pretrained = 'pretrained/deit_small_patch16_224-cd65a155.pth'
model = dict(
backbone=dict(
_delete_=True,
type='ViTAdapter',
patch_size=16,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
drop_path_rate=0.2,
layer_scale=False,
conv_inplane=64,
n_points=4,
deform_num_heads=6,
cffn_ratio=0.25,
deform_ratio=1.0,
interaction_indexes=[[0, 2], [3, 5], [6, 8], [9, 11]],
window_attn=[False] * 12,
window_size=[None] * 12,
pretrained=pretrained),
neck=dict(
type='FPN',
in_channels=[384, 384, 384, 384],
out_channels=256,
num_outs=5))
# optimizer
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
# augmentation strategy originates from DETR / Sparse RCNN
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='AutoAugment',
policies=[
[
dict(type='Resize',
img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
(608, 1333), (640, 1333), (672, 1333), (704, 1333),
(736, 1333), (768, 1333), (800, 1333)],
multiscale_mode='value',
keep_ratio=True)
],
[
dict(type='Resize',
img_scale=[(400, 1333), (500, 1333), (600, 1333)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomCrop',
crop_type='absolute_range',
crop_size=(384, 600),
allow_negative_crop=True),
dict(type='Resize',
img_scale=[(480, 1333), (512, 1333), (544, 1333),
(576, 1333), (608, 1333), (640, 1333),
(672, 1333), (704, 1333), (736, 1333),
(768, 1333), (800, 1333)],
multiscale_mode='value',
override=True,
keep_ratio=True)
]
]),
dict(type='RandomCrop',
crop_type='absolute_range',
crop_size=(1024, 1024),
allow_negative_crop=True),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
data = dict(samples_per_gpu=2,
workers_per_gpu=1,
train=dict(pipeline=train_pipeline))
optimizer = dict(
_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.05,
paramwise_cfg=dict(
custom_keys={
'level_embed': dict(decay_mult=0.),
'pos_embed': dict(decay_mult=0.),
'norm': dict(decay_mult=0.),
'bias': dict(decay_mult=0.)
}))
optimizer_config = dict(grad_clip=None)
fp16 = dict(loss_scale=dict(init_scale=512))
checkpoint_config = dict(
interval=1,
max_keep_ckpts=3,
save_last=True,
)
work_dir = 'output/vit-adapter-s'
exp_name = 'vit-adapter-s'