forked from davidsandberg/facenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmtcnn.py
63 lines (52 loc) · 2.76 KB
/
mtcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import align.detect_face
from scipy import misc
with tf.Graph().as_default():
sess = tf.Session()
with sess.as_default():
with tf.variable_scope('pnet'):
data = tf.placeholder(tf.float32, (None,None,None,3), 'input')
pnet = align.detect_face.PNet({'data':data})
pnet.load('../../data/det1.npy', sess)
with tf.variable_scope('rnet'):
data = tf.placeholder(tf.float32, (None,24,24,3), 'input')
rnet = align.detect_face.RNet({'data':data})
rnet.load('../../data/det2.npy', sess)
with tf.variable_scope('onet'):
data = tf.placeholder(tf.float32, (None,48,48,3), 'input')
onet = align.detect_face.ONet({'data':data})
onet.load('../../data/det3.npy', sess)
pnet_fun = lambda img : sess.run(('pnet/conv4-2/BiasAdd:0', 'pnet/prob1:0'), feed_dict={'pnet/input:0':img})
rnet_fun = lambda img : sess.run(('rnet/conv5-2/conv5-2:0', 'rnet/prob1:0'), feed_dict={'rnet/input:0':img})
onet_fun = lambda img : sess.run(('onet/conv6-2/conv6-2:0', 'onet/conv6-3/conv6-3:0', 'onet/prob1:0'), feed_dict={'onet/input:0':img})
minsize = 20 # minimum size of face
threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold
factor = 0.709 # scale factor
source_path = '/home/david/datasets/casia/CASIA-maxpy-clean/0000045/002.jpg'
img = misc.imread(source_path)
bounding_boxes, points = align.detect_face.detect_face(img, minsize, pnet_fun, rnet_fun, onet_fun, threshold, factor)
print('Bounding box: %s' % bounding_boxes)