forked from neonbjb/tortoise-tts
-
Notifications
You must be signed in to change notification settings - Fork 4
/
tortoise_tts.py
executable file
·266 lines (240 loc) · 12.3 KB
/
tortoise_tts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#!/usr/bin/env python3
import argparse
import os
import sys
import tempfile
import time
import torch
import torchaudio
from tortoise.api import MODELS_DIR, TextToSpeech
from tortoise.utils.audio import get_voices, load_voices, load_audio
from tortoise.utils.text import split_and_recombine_text
parser = argparse.ArgumentParser(
description='TorToiSe is a text-to-speech program that is capable of synthesizing speech '
'in multiple voices with realistic prosody and intonation.')
parser.add_argument(
'text', type=str, nargs='*',
help='Text to speak. If omitted, text is read from stdin.')
parser.add_argument(
'-v, --voice', type=str, default='random', metavar='VOICE', dest='voice',
help='Selects the voice to use for generation. Use the & character to join two voices together. '
'Use a comma to perform inference on multiple voices. Set to "all" to use all available voices. '
'Note that multiple voices require the --output-dir option to be set.')
parser.add_argument(
'-V, --voices-dir', metavar='VOICES_DIR', type=str, dest='voices_dir',
help='Path to directory containing extra voices to be loaded. Use a comma to specify multiple directories.')
parser.add_argument(
'-p, --preset', type=str, default='fast', choices=['ultra_fast', 'fast', 'standard', 'high_quality'], dest='preset',
help='Which voice quality preset to use.')
parser.add_argument(
'-q, --quiet', default=False, action='store_true', dest='quiet',
help='Suppress all output.')
output_group = parser.add_mutually_exclusive_group(required=True)
output_group.add_argument(
'-l, --list-voices', default=False, action='store_true', dest='list_voices',
help='List available voices and exit.')
output_group.add_argument(
'-P, --play', action='store_true', dest='play',
help='Play the audio (requires pydub).')
output_group.add_argument(
'-o, --output', type=str, metavar='OUTPUT', dest='output',
help='Save the audio to a file.')
output_group.add_argument(
'-O, --output-dir', type=str, metavar='OUTPUT_DIR', dest='output_dir',
help='Save the audio to a directory as individual segments.')
multi_output_group = parser.add_argument_group('multi-output options (requires --output-dir)')
multi_output_group.add_argument(
'--candidates', type=int, default=1,
help='How many output candidates to produce per-voice. Note that only the first candidate is used in the combined output.')
multi_output_group.add_argument(
'--regenerate', type=str, default=None,
help='Comma-separated list of clip numbers to re-generate.')
multi_output_group.add_argument(
'--skip-existing', action='store_true',
help='Set to skip re-generating existing clips.')
advanced_group = parser.add_argument_group('advanced options')
advanced_group.add_argument(
'--produce-debug-state', default=False, action='store_true',
help='Whether or not to produce debug_states in current directory, which can aid in reproducing problems.')
advanced_group.add_argument(
'--seed', type=int, default=None,
help='Random seed which can be used to reproduce results.')
advanced_group.add_argument(
'--models-dir', type=str, default=MODELS_DIR,
help='Where to find pretrained model checkpoints. Tortoise automatically downloads these to '
'~/.cache/tortoise/.models, so this should only be specified if you have custom checkpoints.')
advanced_group.add_argument(
'--text-split', type=str, default=None,
help='How big chunks to split the text into, in the format <desired_length>,<max_length>.')
advanced_group.add_argument(
'--disable-redaction', default=False, action='store_true',
help='Normally text enclosed in brackets are automatically redacted from the spoken output '
'(but are still rendered by the model), this can be used for prompt engineering. '
'Set this to disable this behavior.')
advanced_group.add_argument(
'--device', type=str, default=None,
help='Device to use for inference.')
advanced_group.add_argument(
'--batch-size', type=int, default=None,
help='Batch size to use for inference. If omitted, the batch size is set based on available GPU memory.')
tuning_group = parser.add_argument_group('tuning options (overrides preset settings)')
tuning_group.add_argument(
'--num-autoregressive-samples', type=int, default=None,
help='Number of samples taken from the autoregressive model, all of which are filtered using CLVP. '
'As TorToiSe is a probabilistic model, more samples means a higher probability of creating something "great".')
tuning_group.add_argument(
'--temperature', type=float, default=None,
help='The softmax temperature of the autoregressive model.')
tuning_group.add_argument(
'--length-penalty', type=float, default=None,
help='A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.')
tuning_group.add_argument(
'--repetition-penalty', type=float, default=None,
help='A penalty that prevents the autoregressive decoder from repeating itself during decoding. '
'Can be used to reduce the incidence of long silences or "uhhhhhhs", etc.')
tuning_group.add_argument(
'--top-p', type=float, default=None,
help='P value used in nucleus sampling. 0 to 1. Lower values mean the decoder produces more "likely" (aka boring) outputs.')
tuning_group.add_argument(
'--max-mel-tokens', type=int, default=None,
help='Restricts the output length. 1 to 600. Each unit is 1/20 of a second.')
tuning_group.add_argument(
'--cvvp-amount', type=float, default=None,
help='How much the CVVP model should influence the output.'
'Increasing this can in some cases reduce the likelyhood of multiple speakers.')
tuning_group.add_argument(
'--diffusion-iterations', type=int, default=None,
help='Number of diffusion steps to perform. More steps means the network has more chances to iteratively'
'refine the output, which should theoretically mean a higher quality output. '
'Generally a value above 250 is not noticeably better, however.')
tuning_group.add_argument(
'--cond-free', type=bool, default=None,
help='Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for '
'each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output '
'of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and '
'dramatically improves realism.')
tuning_group.add_argument(
'--cond-free-k', type=float, default=None,
help='Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. '
'As cond_free_k increases, the output becomes dominated by the conditioning-free signal. '
'Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k')
tuning_group.add_argument(
'--diffusion-temperature', type=float, default=None,
help='Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 '
'are the "mean" prediction of the diffusion network and will sound bland and smeared. ')
usage_examples = f'''
Examples:
Read text using random voice and place it in a file:
{parser.prog} -o hello.wav "Hello, how are you?"
Read text from stdin and play it using the tom voice:
echo "Say it like you mean it!" | {parser.prog} -P -v tom
Read a text file using multiple voices and save the audio clips to a directory:
{parser.prog} -O /tmp/tts-results -v tom,emma <textfile.txt
'''
try:
args = parser.parse_args()
except SystemExit as e:
if e.code == 0:
print(usage_examples)
sys.exit(e.code)
extra_voice_dirs = args.voices_dir.split(',') if args.voices_dir else []
all_voices = sorted(get_voices(extra_voice_dirs))
if args.list_voices:
for v in all_voices:
print(v)
sys.exit(0)
selected_voices = all_voices if args.voice == 'all' else args.voice.split(',')
selected_voices = [v.split('&') if '&' in v else [v] for v in selected_voices]
for voices in selected_voices:
for v in voices:
if v != 'random' and v not in all_voices:
parser.error(f'voice {v} not available, use --list-voices to see available voices.')
if len(args.text) == 0:
text = ''
for line in sys.stdin:
text += line
else:
text = ' '.join(args.text)
text = text.strip()
if args.text_split:
desired_length, max_length = [int(x) for x in args.text_split.split(',')]
if desired_length > max_length:
parser.error(f'--text-split: desired_length ({desired_length}) must be <= max_length ({max_length})')
texts = split_and_recombine_text(text, desired_length, max_length)
else:
texts = split_and_recombine_text(text)
if len(texts) == 0:
parser.error('no text provided')
if args.output_dir:
os.makedirs(args.output_dir, exist_ok=True)
else:
if len(selected_voices) > 1:
parser.error('cannot have multiple voices without --output-dir"')
if args.candidates > 1:
parser.error('cannot have multiple candidates without --output-dir"')
# error out early if pydub isn't installed
if args.play:
try:
import pydub
import pydub.playback
except ImportError:
parser.error('--play requires pydub to be installed, which can be done with "pip install pydub"')
seed = int(time.time()) if args.seed is None else args.seed
if not args.quiet:
print('Loading tts...')
tts = TextToSpeech(models_dir=args.models_dir, enable_redaction=not args.disable_redaction,
device=args.device, autoregressive_batch_size=args.batch_size)
gen_settings = {
'use_deterministic_seed': seed,
'verbose': not args.quiet,
'k': args.candidates,
'preset': args.preset,
}
tuning_options = [
'num_autoregressive_samples', 'temperature', 'length_penalty', 'repetition_penalty', 'top_p',
'max_mel_tokens', 'cvvp_amount', 'diffusion_iterations', 'cond_free', 'cond_free_k', 'diffusion_temperature']
for option in tuning_options:
if getattr(args, option) is not None:
gen_settings[option] = getattr(args, option)
total_clips = len(texts) * len(selected_voices)
regenerate_clips = [int(x) for x in args.regenerate.split(',')] if args.regenerate else None
for voice_idx, voice in enumerate(selected_voices):
audio_parts = []
voice_samples, conditioning_latents = load_voices(voice, extra_voice_dirs)
for text_idx, text in enumerate(texts):
clip_name = f'{"-".join(voice)}_{text_idx:02d}'
if args.output_dir:
first_clip = os.path.join(args.output_dir, f'{clip_name}_00.wav')
if (args.skip_existing or (regenerate_clips and text_idx not in regenerate_clips)) and os.path.exists(first_clip):
audio_parts.append(load_audio(first_clip, 24000))
if not args.quiet:
print(f'Skipping {clip_name}')
continue
if not args.quiet:
print(f'Rendering {clip_name} ({(voice_idx * len(texts) + text_idx + 1)} of {total_clips})...')
print(' ' + text)
gen = tts.tts_with_preset(
text, voice_samples=voice_samples, conditioning_latents=conditioning_latents, **gen_settings)
gen = gen if args.candidates > 1 else [gen]
for candidate_idx, audio in enumerate(gen):
audio = audio.squeeze(0).cpu()
if candidate_idx == 0:
audio_parts.append(audio)
if args.output_dir:
filename = f'{clip_name}_{candidate_idx:02d}.wav'
torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000)
audio = torch.cat(audio_parts, dim=-1)
if args.output_dir:
filename = f'{"-".join(voice)}_combined.wav'
torchaudio.save(os.path.join(args.output_dir, filename), audio, 24000)
elif args.output:
filename = args.output if args.output else os.tmp
torchaudio.save(args.output, audio, 24000)
elif args.play:
f = tempfile.NamedTemporaryFile(suffix='.wav', delete=True)
torchaudio.save(f.name, audio, 24000)
pydub.playback.play(pydub.AudioSegment.from_wav(f.name))
if args.produce_debug_state:
os.makedirs('debug_states', exist_ok=True)
dbg_state = (seed, texts, voice_samples, conditioning_latents, args)
torch.save(dbg_state, os.path.join('debug_states', f'debug_{"-".join(voice)}.pth'))