forked from infiniflow/ragflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsequence2txt_model.py
195 lines (166 loc) · 6.74 KB
/
sequence2txt_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import requests
from openai.lib.azure import AzureOpenAI
from zhipuai import ZhipuAI
import io
from abc import ABC
from ollama import Client
from openai import OpenAI
import os
import json
from rag.utils import num_tokens_from_string
import base64
import re
class Base(ABC):
def __init__(self, key, model_name):
pass
def transcription(self, audio, **kwargs):
transcription = self.client.audio.transcriptions.create(
model=self.model_name,
file=audio,
response_format="text"
)
return transcription.text.strip(), num_tokens_from_string(transcription.text.strip())
def audio2base64(self, audio):
if isinstance(audio, bytes):
return base64.b64encode(audio).decode("utf-8")
if isinstance(audio, io.BytesIO):
return base64.b64encode(audio.getvalue()).decode("utf-8")
raise TypeError("The input audio file should be in binary format.")
class GPTSeq2txt(Base):
def __init__(self, key, model_name="whisper-1", base_url="https://api.openai.com/v1"):
if not base_url: base_url = "https://api.openai.com/v1"
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
class QWenSeq2txt(Base):
def __init__(self, key, model_name="paraformer-realtime-8k-v1", **kwargs):
import dashscope
dashscope.api_key = key
self.model_name = model_name
def transcription(self, audio, format):
from http import HTTPStatus
from dashscope.audio.asr import Recognition
recognition = Recognition(model=self.model_name,
format=format,
sample_rate=16000,
callback=None)
result = recognition.call(audio)
ans = ""
if result.status_code == HTTPStatus.OK:
for sentence in result.get_sentence():
ans += sentence.text.decode('utf-8') + '\n'
return ans, num_tokens_from_string(ans)
return "**ERROR**: " + result.message, 0
class AzureSeq2txt(Base):
def __init__(self, key, model_name, lang="Chinese", **kwargs):
self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
self.model_name = model_name
self.lang = lang
class XinferenceSeq2txt(Base):
def __init__(self, key, model_name="whisper-small", **kwargs):
self.base_url = kwargs.get('base_url', None)
self.model_name = model_name
self.key = key
def transcription(self, audio, language="zh", prompt=None, response_format="json", temperature=0.7):
if isinstance(audio, str):
audio_file = open(audio, 'rb')
audio_data = audio_file.read()
audio_file_name = audio.split("/")[-1]
else:
audio_data = audio
audio_file_name = "audio.wav"
payload = {
"model": self.model_name,
"language": language,
"prompt": prompt,
"response_format": response_format,
"temperature": temperature
}
files = {
"file": (audio_file_name, audio_data, 'audio/wav')
}
try:
response = requests.post(
f"{self.base_url}/v1/audio/transcriptions",
files=files,
data=payload
)
response.raise_for_status()
result = response.json()
if 'text' in result:
transcription_text = result['text'].strip()
return transcription_text, num_tokens_from_string(transcription_text)
else:
return "**ERROR**: Failed to retrieve transcription.", 0
except requests.exceptions.RequestException as e:
return f"**ERROR**: {str(e)}", 0
class TencentCloudSeq2txt(Base):
def __init__(
self, key, model_name="16k_zh", base_url="https://asr.tencentcloudapi.com"
):
from tencentcloud.common import credential
from tencentcloud.asr.v20190614 import asr_client
key = json.loads(key)
sid = key.get("tencent_cloud_sid", "")
sk = key.get("tencent_cloud_sk", "")
cred = credential.Credential(sid, sk)
self.client = asr_client.AsrClient(cred, "")
self.model_name = model_name
def transcription(self, audio, max_retries=60, retry_interval=5):
from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
TencentCloudSDKException,
)
from tencentcloud.asr.v20190614 import models
import time
b64 = self.audio2base64(audio)
try:
# dispatch disk
req = models.CreateRecTaskRequest()
params = {
"EngineModelType": self.model_name,
"ChannelNum": 1,
"ResTextFormat": 0,
"SourceType": 1,
"Data": b64,
}
req.from_json_string(json.dumps(params))
resp = self.client.CreateRecTask(req)
# loop query
req = models.DescribeTaskStatusRequest()
params = {"TaskId": resp.Data.TaskId}
req.from_json_string(json.dumps(params))
retries = 0
while retries < max_retries:
resp = self.client.DescribeTaskStatus(req)
if resp.Data.StatusStr == "success":
text = re.sub(
r"\[\d+:\d+\.\d+,\d+:\d+\.\d+\]\s*", "", resp.Data.Result
).strip()
return text, num_tokens_from_string(text)
elif resp.Data.StatusStr == "failed":
return (
"**ERROR**: Failed to retrieve speech recognition results.",
0,
)
else:
time.sleep(retry_interval)
retries += 1
return "**ERROR**: Max retries exceeded. Task may still be processing.", 0
except TencentCloudSDKException as e:
return "**ERROR**: " + str(e), 0
except Exception as e:
return "**ERROR**: " + str(e), 0