-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathrun.py
131 lines (127 loc) · 5.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from pytorch_lightning.utilities.cli import LightningCLI, LightningArgumentParser
from pytorch_lightning.trainer.trainer import Trainer
from modules import get_module, BaseFewShotModule
from dataset_and_process import FewShotDataModule
from pytorch_lightning.core.lightning import LightningModule
from callbacks import RefinedSaverCallback
import torch
import numpy as np
import json
import os
import utils
from pytorch_lightning.utilities.seed import seed_everything
class Few_Shot_CLI(LightningCLI):
"""Add testing, model specifying and loading proccess into LightningCLI.
Add four config parameters:
--is_test: determine the mode
--model_name: The few-shot model name. For example, PN.
--load_pretrained: whether to load pretrained model.
--pre_trained_path: The path of pretrained model.
--load_backbone_only: whether to only load the backbone.
--num_test: The number of processes of implementing testing.
The average accuracy and 95% confidence interval across
all repeated processes will be calculated.
--seed: The seed of training and testing.
"""
def __init__(self,**kwargs) -> None:
"""
Args:
kwargs: Original parameters of LightningCLI
"""
super().__init__(**kwargs)
def add_arguments_to_parser(self, parser: LightningArgumentParser) -> None:
parser.add_argument(
'is_test',
type=bool,
default=False,
help="whether in testing only mode"
)
parser.add_argument(
'model_name',
type=str,
default="PN",
help="The model name to train on.\
It should match the file name that contains the model."
)
parser.add_argument(
'load_pretrained',
type=bool,
default=False,
help="whether load pretrained model.\
This is is different from resume_from_checkpoint\
that loads everything from a breakpoint."
)
parser.add_argument(
'pre_trained_path',
type=str,
default="",
help="The path of pretrained model. For testing only."
)
parser.add_argument(
'load_backbone_only',
type=bool,
default=False,
help="whether only load the backbone."
)
parser.add_argument(
'num_test',
type=int,
default=5,
help=r"The number of processes of implementing testing.\
The average accuracy and 95% confidence interval across\
all repeated processes will be calculated."
)
parser.add_argument(
'seed',
type=int,
default=5,
help=r"The seed of training and testing."
)
def parse_arguments(self) -> None:
"""Rewrite for skipping check."""
self.config = self.parser.parse_args(_skip_check = True)
def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None:
"""Rewrite for skipping check."""
log_dir = trainer.log_dir or trainer.default_root_dir
config_path = os.path.join(log_dir, self.config_filename)
self.parser.save(self.config, config_path, skip_none=False, skip_check=True)
def before_instantiate_classes(self) -> None:
"""get the configured model"""
self.model_class = get_module(self.config["model_name"])
def before_fit(self):
"""Load pretrained model."""
if self.config["load_pretrained"]:
state = torch.load(self.config["pre_trained_path"])["state_dict"]
if self.config["load_backbone_only"]:
state = utils.preserve_key(state, "backbone")
self.model.backbone.load_state_dict(state)
else:
self.model.load_state_dict(state)
def fit(self):
"""Runs fit of the instantiated trainer class and prepared fit keyword arguments"""
if self.config["is_test"]:
pass
else:
self.trainer.fit(**self.fit_kwargs)
def after_fit(self):
"""Runs testing and logs the results"""
seed_everything(self.config["seed"])
if self.config["is_test"]:
acc_list = []
for _ in range(self.config["num_test"]):
result=self.trainer.test(self.model, datamodule=self.datamodule)
acc_list.append(result[0]['test/acc']*100)
acc_list = np.array(acc_list)
mean = np.mean(acc_list)
confidence_interval = np.std(acc_list)*1.96
with open(os.path.join(self.trainer.log_dir, "test_result.json"), 'w') as f:
json.dump({'mean':mean, "confidence interval": confidence_interval}, f)
else:
pass
if __name__ == '__main__':
cli = Few_Shot_CLI(
model_class= BaseFewShotModule,
datamodule_class = FewShotDataModule,
# seed_everything_default=1234,
save_config_callback = RefinedSaverCallback
)