Skip to content

Latest commit

 

History

History
 
 

挑战任务2:PyQt5编写GUI界面

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

拓展挑战:编写GUI图像处理应用程序。


挑战内容

前面我们学习的OpenCV内容都是运行在命令行中的,没有界面,所以本次的拓展挑战内容便是:

了解Python编写GUI界面的方法,使用PyQt5编写如下的图像处理应用程序,实现打开摄像头、捕获图片、读取本地图片、灰度化和Otsu自动阈值分割的功能。

**挑战题不会做也木有关系,但请务必在自行尝试后,再看下面的解答噢,**不然...我也没办法( ̄▽ ̄)"


挑战解答

简介

目前我们学的内容都是跑在命令行中的,并没有界面,那么"脚本语言"Python如何搭建GUI界面呢?

其实Python支持多种图形界面库,如Tk(Tkinter)wxPythonPyQt等,虽然Python自带Tkinter,无需额外安装包,但我更推荐使用PyQt,一是因为它完全基于Qt,跨平台,功能强大,有助于了解Qt的语法,二是Qt提供了Designer设计工具,界面设计上可以拖控件搞定,非常方便,大大节省时间。

大家感兴趣的话,除去官网,下面是一些可参考的资源:

安装

pip install pyqt5

下载速度慢的话,可以到PyPI上下载离线版安装。另外我推荐使用Qt Designer来设计界面,如果你装的是Anaconda的话,就已经自带了designer.exe,例如我的是在:D:\ProgramData\Anaconda3\Library\bin\,如果是普通的Python环境,则需要自行安装:

pip install pyqt5-tools

安装完成后,designer.exe应该在Python安装目录下:xxx\Lib\site-packages\pyqt5_tools\。

可以使用下面的代码生成一个简单的界面:

import sys
from PyQt5.QtWidgets import QApplication, QWidget

if __name__ == '__main__':
    app = QApplication(sys.argv)

    window = QWidget()
    window.setWindowTitle('Hello World!')
    window.show()

    sys.exit(app.exec_())

界面设计

根据我们的挑战内容,解决思路是使用Qt Designer来设计界面,使用Python完成代码逻辑。打开designer.exe,会弹出创建新窗体的窗口,我们直接点击“create”:

界面的左侧是Qt的常用控件"Widget Box",右侧有一个控件属性窗口"Property Editor",其余暂时用不到。本例中我们只用到了"Push Button"控件和"Label"控件:最上面的三个Label控件用于显示图片,可以在属性窗口调整它的大小,我们统一调整到150×150:

另外,控件上显示的文字"text"属性和控件的名字"objectName"属性需要修改,便于显示和代码调用。可以按照下面我推荐的命名:

控件 显示内容text 控件名objectName
PushButton 打开摄像头 btnOpenCamera
PushButton 捕获图片 btnCapture
PushButton 打开图片 btnReadImage
PushButton 灰度化 btnGray
PushButton 阈值分割(Otsu) btnThreshold
Label 摄像头 labelCamera
Label 捕获图 labelCapture
Label 结果图 labelResult

这样大致界面就出来了,很简单:

按钮事件

如果你之前有过一些GUI开发经验,比如MFC,WinForm等,就知道GUI是通过事件驱动的,什么意思呢?比如前面我们已经设计好了界面,接下来就需要实现"打开摄像头"到"阈值分割"这5个按钮的功能,也就是给每个按钮指定一个"函数",逻辑代码写在这个函数里面。这种函数就称为事件,Qt中称为槽连接。

点击Designer工具栏的"Edit Signals/Slots"按钮,进入槽函数编辑界面,点击旁边的"Edit Widgets"可以恢复正常视图:

然后点击按钮并拖动,当产生类似于电路中的接地符号时释放鼠标,参看下面动图:

在弹出的配置窗口中,可以看到左侧是按钮的常用事件,我们选择点击事件"clicked()",然后添加一个名为"btnOpenCamera_Clicked()"的槽函数:

重复上面的步骤,给五个按钮添加五个槽函数,最终结果如下:

到此,我们就完成了界面设计的所有工作,按下Ctrl+S保存当前窗口为.ui文件。.ui文件其实是按照XML格式标记的内容,可以用文本编辑器将.ui文件打开看看。

ui文件转py代码

因为我们是用Designer工具设计出的界面,并不是用Python代码敲出来的,所以要想真正运行,需要使用pyuic5将ui文件转成py文件。pyuic5.exe默认在%\Scripts\下,比如我的是在:D:\ProgramData\Anaconda3\Scripts\。

打开cmd命令行,切换到ui文件的保存目录。Windows下有个小技巧,可以在目录的地址栏输入cmd,一步切换到当前目录:

然后执行这条指令:

pyuic5 -o mainForm.py using_pyqt_create_ui.ui

如果出现pyuic5不是内部命令的错误,说明pyuic5的路径没有在环境变量里,添加下就好了。执行正常的话,就会生成mainForm.py文件,里面应该包含一个名为"Ui_MainWindow"的类。

编写逻辑代码

经验之谈:mainForm.py文件是根据ui文件生成的,也就是说重新生成会覆盖掉。所以为了使界面与逻辑分离,我们需要新建一个逻辑文件。

在同一工作目录下新建一个"mainEntry.py"的文件,存放逻辑代码。代码中的每部分我都写得比较独立,没有封装成函数,便于理解。代码看上去很长,但很简单,可以每个模块单独看,有几个需要注意的地方我做了注释:

import sys
import cv2

from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtCore import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import QFileDialog, QMainWindow

from mainForm import Ui_MainWindow


class PyQtMainEntry(QMainWindow, Ui_MainWindow):
    def __init__(self):
        super().__init__()
        self.setupUi(self)

        self.camera = cv2.VideoCapture(0)
        self.is_camera_opened = False  # 摄像头有没有打开标记

        # 定时器:30ms捕获一帧
        self._timer = QtCore.QTimer(self)
        self._timer.timeout.connect(self._queryFrame)
        self._timer.setInterval(30)

    def btnOpenCamera_Clicked(self):
        '''
        打开和关闭摄像头
        '''
        self.is_camera_opened = ~self.is_camera_opened
        if self.is_camera_opened:
            self.btnOpenCamera.setText("关闭摄像头")
            self._timer.start()
        else:
            self.btnOpenCamera.setText("打开摄像头")
            self._timer.stop()

    def btnCapture_Clicked(self):
        '''
        捕获图片
        '''
        # 摄像头未打开,不执行任何操作
        if not self.is_camera_opened:
            return

        self.captured = self.frame

        # 后面这几行代码几乎都一样,可以尝试封装成一个函数
        rows, cols, channels = self.captured.shape
        bytesPerLine = channels * cols
        # Qt显示图片时,需要先转换成QImgage类型
        QImg = QImage(self.captured.data, cols, rows, bytesPerLine, QImage.Format_RGB888)
        self.labelCapture.setPixmap(QPixmap.fromImage(QImg).scaled(
            self.labelCapture.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation))

    def btnReadImage_Clicked(self):
        '''
        从本地读取图片
        '''
        # 打开文件选取对话框
        filename,  _ = QFileDialog.getOpenFileName(self, '打开图片')
        if filename:
            self.captured = cv2.imread(str(filename))
            # OpenCV图像以BGR通道存储,显示时需要从BGR转到RGB
            self.captured = cv2.cvtColor(self.captured, cv2.COLOR_BGR2RGB)

            rows, cols, channels = self.captured.shape
            bytesPerLine = channels * cols
            QImg = QImage(self.captured.data, cols, rows, bytesPerLine, QImage.Format_RGB888)
            self.labelCapture.setPixmap(QPixmap.fromImage(QImg).scaled(
                self.labelCapture.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation))

    def btnGray_Clicked(self):
        '''
        灰度化
        '''
        # 如果没有捕获图片,则不执行操作
        if not hasattr(self, "captured"):
            return

        self.cpatured = cv2.cvtColor(self.captured, cv2.COLOR_RGB2GRAY)

        rows, columns = self.cpatured.shape
        bytesPerLine = columns
        # 灰度图是单通道,所以需要用Format_Indexed8
        QImg = QImage(self.cpatured.data, columns, rows, bytesPerLine, QImage.Format_Indexed8)
        self.labelResult.setPixmap(QPixmap.fromImage(QImg).scaled(
            self.labelResult.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation))

    def btnThreshold_Clicked(self):
        '''
        Otsu自动阈值分割
        '''
        if not hasattr(self, "captured"):
            return

        _, self.cpatured = cv2.threshold(
            self.cpatured, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

        rows, columns = self.cpatured.shape
        bytesPerLine = columns
        # 阈值分割图也是单通道,也需要用Format_Indexed8
        QImg = QImage(self.cpatured.data, columns, rows, bytesPerLine, QImage.Format_Indexed8)
        self.labelResult.setPixmap(QPixmap.fromImage(QImg).scaled(
            self.labelResult.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation))

    @QtCore.pyqtSlot()
    def _queryFrame(self):
        '''
        循环捕获图片
        '''
        ret, self.frame = self.camera.read()

        img_rows, img_cols, channels = self.frame.shape
        bytesPerLine = channels * img_cols

        cv2.cvtColor(self.frame, cv2.COLOR_BGR2RGB, self.frame)
        QImg = QImage(self.frame.data, img_cols, img_rows, bytesPerLine, QImage.Format_RGB888)
        self.labelCamera.setPixmap(QPixmap.fromImage(QImg).scaled(
            self.labelCamera.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation))


if __name__ == "__main__":
    app = QtWidgets.QApplication(sys.argv)
    window = PyQtMainEntry()
    window.show()
    sys.exit(app.exec_())

本文只是抛砖引玉,介绍了PyQt5的简单使用,想要深入学习,可以参考本文开头的参考资料噢(●ˇ∀ˇ●)

引用