forked from ROCm/MIOpen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv_verify.hpp
306 lines (273 loc) · 12.4 KB
/
conv_verify.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#ifndef GUARD_MIOPEN_CONV_VERIFY_HPP
#define GUARD_MIOPEN_CONV_VERIFY_HPP
#include <cassert>
template <typename _Tgpu /* the data type used in GPU computations (usually half) */,
typename _Tcheck /* the data type used in CPU checkings (usually double) */>
void RunBackwardWeightsCPUVerify(std::vector<_Tcheck>& dwei_host,
std::vector<_Tgpu>& in,
std::vector<_Tgpu>& dout,
const int in_n,
const int in_c,
const int in_h,
const int in_w,
const int in_nstride,
const int in_cstride,
const int in_hstride,
const int in_wstride,
const int wei_n,
const int wei_c,
const int wei_h,
const int wei_w,
const int wei_nstride,
const int wei_cstride,
const int wei_hstride,
const int wei_wstride,
const int out_n,
const int out_c,
const int out_h,
const int out_w,
const int out_nstride,
const int out_cstride,
const int out_hstride,
const int out_wstride,
const int stride_h,
const int stride_w,
const int pad_h,
const int pad_w,
const int dilation_h,
const int dilation_w
// , miopenConvolutionMode_t mode
)
{
assert(in_wstride == 1);
assert(wei_wstride == 1);
assert(out_wstride == 1);
#ifdef NDEBUG
(void)in_wstride; // -warn
(void)wei_wstride; // -warn
(void)out_wstride; // -warn
#endif
std::vector<_Tcheck> t_wei(wei_n * wei_c * wei_h * wei_w, static_cast<_Tcheck>(0));
for(int o = 0; o < out_n; o++) // mini-batch size
{
for(int w = 0; w < out_c; w++) // out_channels (num filters)
{
for(int k = 0; k < in_c; k++) // in_channels (RGB)
{
for(int x = 0; x < wei_h; x++) // filter height
{
for(int y = 0; y < wei_w; y++) // filter width
{
for(int i = 0; i < out_h; i++) // output height
{
for(int j = 0; j < out_w; j++) // output width
{
int in_i = x * dilation_h + i * stride_h - pad_h; // vertical
int in_j = y * dilation_w + j * stride_w - pad_w; // horizontal
if((in_i >= 0) && (in_i < in_h) && (in_j >= 0) && (in_j < in_w))
{
t_wei[w * wei_nstride + k * wei_cstride + x * wei_hstride +
y] +=
static_cast<_Tcheck>(in[o * in_nstride + k * in_cstride +
in_i * in_hstride + in_j]) *
static_cast<_Tcheck>(
dout[o * out_nstride + w * out_cstride +
i * out_hstride + j]);
}
}
}
}
}
}
}
}
for(size_t i = 0; i < wei_n * wei_c * wei_h * wei_w; ++i)
{
dwei_host[i] = t_wei[i];
}
#ifdef BACKWARD_WRW_VERIFY_DIRECT_2
{
assert(stride_h == 1);
assert(stride_w == 1);
std::fill(dwei_host.begin(), dwei_host.end(), (static_cast<_Tcheck>(0));
int batch_sz = out_n;
int outputs = out_c;
int inputs = in_c;
int top_df_batch_stride = out_nstride;
int top_df_channel_stride = out_cstride;
int top_df_stride = out_hstride;
int bot_batch_stride = in_nstride;
int bot_channel_stride = in_cstride;
int weights_df_v2_stride = wei_nstride;
int bot_stride = in_hstride;
int filter_size_w = wei_w;
int filter_size_h = wei_h;
int kernel_sz = filter_size_w * filter_size_h;
int top_height = out_h;
int top_width = out_w;
int bot_height = in_h;
int bot_width = in_w;
for(int b = 0; b < batch_sz; ++b)
{
for(int o = 0; o < outputs; ++o)
{
for(int c = 0; c < inputs; ++c)
{
int top_df_off = b * top_df_batch_stride + o * top_df_channel_stride;
int bot_off = b * bot_batch_stride + c * bot_channel_stride;
int we_off = o * weights_df_v2_stride + c * kernel_sz;
for(int j = 0, c_j = j - pad_h; j < top_height; ++j, ++c_j)
{
for(int i = 0, c_i = i - pad_w; i < top_width; i++, ++c_i)
{
_Tcheck top_val =
static_cast<_Tcheck>(dout[top_df_off + j * top_df_stride + i]);
for(int k = 0, c_j = j - pad_h; k < filter_size_h; ++k, ++c_j)
{
for(int l = 0, c_i = i - pad_w; l < filter_size_w; ++l, ++c_i)
{
_Tcheck bot_val =
(c_j >= 0 && c_j < bot_height && c_i >= 0 &&
c_i < bot_width)
? static_cast<_Tcheck>(
in[bot_off + c_j * bot_stride + c_i])
: static_cast<_Tcheck>(0);
dwei_host[we_off + k * filter_size_w + l] += bot_val * top_val;
}
}
}
}
}
}
}
}
#endif
//#ifdef BACKWARD_WRW_VERIFY_GEMM
#if 0
{
assert(stride_h == stride_w);
assert(pad_h == pad_w);
std::fill(dwei_host.begin(), dwei_host.end(), static_cast<_Tcheck>(0));
int batch_sz = out_n;
int outputs = out_c;
int inputs = in_c;
int bot_batch_stride = in_c*in_h*in_w;
int bot_channel_stride = in_h*in_w;
int bot_stride = in_w;
int bot_height = in_h;
int bot_width = in_w;
int top_width = out_w;
int top_height = out_h;
int top_df_channel_stride = top_width * top_height;
int top_df_batch_stride = top_df_channel_stride * out_c;
int weights_width = wei_w * wei_h * wei_c;
int weights_height = wei_n;
int weights_df_v_stride = weights_width;
// int kernel_size = wei_w;
int pad = pad_w;
int stride = stride_w;
// allocate raw data for in, dout, dwei for using im2col/gemm aDNN functions
_Tcheck * weights_df_v_ptr = new _Tcheck[weights_width * weights_height];
_Tcheck * top_df_ptr = new _Tcheck[out_n*out_c*out_h*out_w];
_Tcheck * bot_ptr = new _Tcheck[in_n*in_c*in_h*in_w];
// copy input (in) into packed
for (int n = 0; n < in_n; n++)
{
for (int c = 0; c < in_c; c++)
{
for (int h = 0; h < in_h; h++)
{
for (int w = 0; w < in_w; w++)
{
// if (mode == miopenTranspose)
// bot_ptr[n*in_c*in_h*in_w + c*in_h*in_w + h*in_w + w] = static_cast<_Tcheck>(dout[n*in_nstride + c*in_cstride + h*in_hstride + w]);
// else
bot_ptr[n*in_c*in_h*in_w + c*in_h*in_w + h*in_w + w] = static_cast<_Tcheck>(in[n*in_nstride + c*in_cstride + h*in_hstride + w]);
}
}
}
}
// copy delta out (dout) into packed
for (int n = 0; n < out_n; n++)
{
for (int c = 0; c < out_c; c++)
{
for (int h = 0; h < out_h; h++)
{
for (int w = 0; w < out_w; w++)
{
// if (mode == miopenTranspose)
// top_df_ptr[n*out_c*out_h*out_w + c*out_h*out_w + h*out_w + w] = in[n*out_nstride + c*out_cstride + h*out_hstride + w];
// else
top_df_ptr[n*out_c*out_h*out_w + c*out_h*out_w + h*out_w + w] = static_cast<_Tcheck>(dout[n*out_nstride + c*out_cstride + h*out_hstride + w]);
}
}
}
}
int im2col_batch_stride = weights_width * top_width * top_height;
_Tcheck * im2col_ptr = new _Tcheck[im2col_batch_stride * batch_sz];
#define ADNN_MM_TRANSPOSE 1
memset(im2col_ptr, 0, im2col_batch_stride * batch_sz * sizeof(_Tcheck));
memset(weights_df_v_ptr, 0, weights_width * weights_height * sizeof(_Tcheck));
for (int b = 0; b < batch_sz; ++b)
{
ADNN_im2col_cpu<_Tcheck>((const _Tcheck*)&bot_ptr[bot_batch_stride * b], inputs,
bot_height, bot_width, wei_h, wei_w, pad,
stride, &im2col_ptr[im2col_batch_stride * b]);
// sum up over mini-batch
ADNN_mm_cpu<_Tcheck>((const _Tcheck*)&top_df_ptr[top_df_batch_stride * b], top_width * top_height, outputs, top_df_channel_stride, 0,
(const _Tcheck *)&im2col_ptr[im2col_batch_stride * b], top_width * top_height, weights_width, top_width * top_height, ADNN_MM_TRANSPOSE,
weights_df_v_ptr, weights_width, weights_height, weights_df_v_stride, 0,
1, 1);
}
// read back packed delta weight
for (int n = 0; n < wei_n; n++)
{
for (int c = 0; c < wei_c; c++)
{
for (int h = 0; h < wei_h; h++)
{
for (int w = 0; w < wei_w; w++)
{
dwei_host[n*wei_nstride + c*wei_cstride + h*wei_hstride + w] = weights_df_v_ptr[n*wei_c*wei_h*wei_w + c*wei_h*wei_w + h*wei_w + w];
}
}
}
}
delete[] im2col_ptr;
delete[] weights_df_v_ptr;
delete[] top_df_ptr;
delete[] bot_ptr;
}
#else
(void)in_n; // -warning
(void)wei_c; // -warning
(void)wei_n; // -warning
#endif
}
#endif // GUARD_MIOPEN_CONV_VERIFY_HPP