forked from PeihaoChen/regnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_feature.py
168 lines (142 loc) · 6.52 KB
/
extract_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse
import time
import os
import numpy as np
import pickle as pkl
import torch.nn.parallel
from PIL import Image
from torch.utils.data import Dataset
import torch.optim
import torchvision
from glob import glob
from tsn.models import TSN
class GroupScale(object):
def __init__(self, size, interpolation=Image.BILINEAR):
self.worker = torchvision.transforms.Scale(size, interpolation)
def __call__(self, img_group):
return [self.worker(img) for img in img_group]
class GroupNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
rep_mean = self.mean * (tensor.size()[0]//len(self.mean))
rep_std = self.std * (tensor.size()[0]//len(self.std))
for t, m, s in zip(tensor, rep_mean, rep_std):
t.sub_(m).div_(s)
return tensor
class Stack(object):
def __init__(self, roll=False):
self.roll = roll
def __call__(self, img_group):
if img_group[0].mode == 'L':
return np.concatenate([np.expand_dims(x, 2) for x in img_group], axis=2)
elif img_group[0].mode == 'RGB':
if self.roll:
return np.concatenate([np.array(x)[:, :, ::-1] for x in img_group], axis=2)
else:
return np.concatenate(img_group, axis=2)
class ToTorchFormatTensor(object):
""" Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """
def __init__(self, div=True):
self.div = div
def __call__(self, pic):
if isinstance(pic, np.ndarray):
# handle numpy array
img = torch.from_numpy(pic).permute(2, 0, 1).contiguous()
else:
# handle PIL Image
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
img = img.view(pic.size[1], pic.size[0], len(pic.mode))
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
return img.float().div(255) if self.div else img.float()
class TSNDataSet(Dataset):
def __init__(self, root_path, list_file, modality='RGB',
image_tmpl='img_{:05d}.jpg', transform=None):
self.root_path = root_path
self.list_file = list_file
self.modality = modality
self.image_tmpl = image_tmpl
self.transform = transform
with open(list_file) as f:
self.video_list = [line.strip() for line in f]
f.close()
def _load_image(self, directory, idx):
if self.modality == 'RGB':
return [Image.open(os.path.join(directory, self.image_tmpl.format(idx))).convert('RGB')]
elif self.modality == 'Flow':
x_img = Image.open(os.path.join(directory, self.image_tmpl.format('x', idx))).convert('L')
y_img = Image.open(os.path.join(directory, self.image_tmpl.format('y', idx))).convert('L')
return [x_img, y_img]
def __getitem__(self, index):
video_path = os.path.join(self.root_path, self.video_list[index])
images = list()
if self.modality == 'RGB':
num_frames = len(glob(os.path.join(video_path, "img*.jpg")))
elif self.modality == 'Flow':
num_frames = len(glob(os.path.join(video_path, "flow_x*.jpg")))
for ind in (np.arange(num_frames)+1):
images.extend(self._load_image(video_path, ind))
process_data = self.transform(images)
return process_data, video_path
def __len__(self):
return len(self.video_list)
def eval_video(data):
if args.modality == 'RGB':
length = 3
elif args.modality == 'Flow':
length = 2
else:
raise ValueError("Unknown modality "+args.modality)
input_var = torch.autograd.Variable(data.view(-1, length, data.size(2), data.size(3)),
volatile=True)
baseout = np.squeeze(net(input_var).data.cpu().numpy().copy())
return baseout
if __name__ == '__main__':
# options
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_dir', type=str)
parser.add_argument('-o', '--output_dir', type=str)
parser.add_argument('-m', '--modality', type=str, choices=['RGB', 'Flow'])
parser.add_argument('-t', '--test_list', type=str)
parser.add_argument('--input_size', type=int, default=224)
parser.add_argument('--crop_fusion_type', type=str, default='avg',
choices=['avg', 'max', 'topk'])
parser.add_argument('--dropout', type=float, default=0.7)
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--flow_prefix', type=str, default='')
args = parser.parse_args()
net = TSN(args.modality,
consensus_type=args.crop_fusion_type,
dropout=args.dropout)
cropping = torchvision.transforms.Compose([
GroupScale((net.input_size, net.input_size)),
])
data_loader = torch.utils.data.DataLoader(
TSNDataSet(args.input_dir, args.test_list,
modality=args.modality,
image_tmpl="img_{:05d}.jpg" if args.modality == 'RGB' else args.flow_prefix+"flow_{}_{:05d}.jpg",
transform=torchvision.transforms.Compose([
cropping, Stack(roll=True),
ToTorchFormatTensor(div=False),
GroupNormalize(net.input_mean, net.input_std),
])),
batch_size=1, shuffle=False,
num_workers=1, pin_memory=True)
net = torch.nn.DataParallel(net).cuda()
net.eval()
for i, (data, video_path) in enumerate(data_loader):
os.makedirs(args.output_dir, exist_ok=True)
ft_path = os.path.join(args.output_dir, video_path[0].split(os.sep)[-1]+".pkl")
if args.modality == 'RGB':
length = 3
elif args.modality == 'Flow':
length = 2
input_var = torch.autograd.Variable(data.view(-1, length, data.size(2), data.size(3)),
volatile=True)
rst = np.squeeze(net(input_var).data.cpu().numpy().copy())
pkl.dump(rst, open(ft_path, "wb"))