forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_utils.py
451 lines (349 loc) · 14.7 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# SPDX-License-Identifier: Apache-2.0
import asyncio
import os
import socket
from typing import AsyncIterator, Tuple
from unittest.mock import patch
import pytest
import torch
from vllm_test_utils import monitor
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.utils import (FlexibleArgumentParser, MemorySnapshot,
PlaceholderModule, StoreBoolean, bind_kv_cache,
deprecate_kwargs, get_open_port, memory_profiling,
merge_async_iterators, supports_kw)
from .utils import error_on_warning, fork_new_process_for_each_test
@pytest.mark.asyncio
async def test_merge_async_iterators():
async def mock_async_iterator(idx: int):
try:
while True:
yield f"item from iterator {idx}"
await asyncio.sleep(0.1)
except asyncio.CancelledError:
print(f"iterator {idx} cancelled")
iterators = [mock_async_iterator(i) for i in range(3)]
merged_iterator = merge_async_iterators(*iterators)
async def stream_output(generator: AsyncIterator[Tuple[int, str]]):
async for idx, output in generator:
print(f"idx: {idx}, output: {output}")
task = asyncio.create_task(stream_output(merged_iterator))
await asyncio.sleep(0.5)
task.cancel()
with pytest.raises(asyncio.CancelledError):
await task
for iterator in iterators:
try:
# Can use anext() in python >= 3.10
await asyncio.wait_for(iterator.__anext__(), 1)
except StopAsyncIteration:
# All iterators should be cancelled and print this message.
print("Iterator was cancelled normally")
except (Exception, asyncio.CancelledError) as e:
raise AssertionError() from e
def test_deprecate_kwargs_always():
@deprecate_kwargs("old_arg", is_deprecated=True)
def dummy(*, old_arg: object = None, new_arg: object = None):
pass
with pytest.warns(DeprecationWarning, match="'old_arg'"):
dummy(old_arg=1)
with error_on_warning(DeprecationWarning):
dummy(new_arg=1)
def test_deprecate_kwargs_never():
@deprecate_kwargs("old_arg", is_deprecated=False)
def dummy(*, old_arg: object = None, new_arg: object = None):
pass
with error_on_warning(DeprecationWarning):
dummy(old_arg=1)
with error_on_warning(DeprecationWarning):
dummy(new_arg=1)
def test_deprecate_kwargs_dynamic():
is_deprecated = True
@deprecate_kwargs("old_arg", is_deprecated=lambda: is_deprecated)
def dummy(*, old_arg: object = None, new_arg: object = None):
pass
with pytest.warns(DeprecationWarning, match="'old_arg'"):
dummy(old_arg=1)
with error_on_warning(DeprecationWarning):
dummy(new_arg=1)
is_deprecated = False
with error_on_warning(DeprecationWarning):
dummy(old_arg=1)
with error_on_warning(DeprecationWarning):
dummy(new_arg=1)
def test_deprecate_kwargs_additional_message():
@deprecate_kwargs("old_arg", is_deprecated=True, additional_message="abcd")
def dummy(*, old_arg: object = None, new_arg: object = None):
pass
with pytest.warns(DeprecationWarning, match="abcd"):
dummy(old_arg=1)
def test_get_open_port():
os.environ["VLLM_PORT"] = "5678"
# make sure we can get multiple ports, even if the env var is set
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s1:
s1.bind(("localhost", get_open_port()))
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s2:
s2.bind(("localhost", get_open_port()))
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s3:
s3.bind(("localhost", get_open_port()))
os.environ.pop("VLLM_PORT")
# Tests for FlexibleArgumentParser
@pytest.fixture
def parser():
parser = FlexibleArgumentParser()
parser.add_argument('--image-input-type',
choices=['pixel_values', 'image_features'])
parser.add_argument('--model-name')
parser.add_argument('--batch-size', type=int)
parser.add_argument('--enable-feature', action='store_true')
return parser
@pytest.fixture
def parser_with_config():
parser = FlexibleArgumentParser()
parser.add_argument('serve')
parser.add_argument('model_tag')
parser.add_argument('--served-model-name', type=str)
parser.add_argument('--config', type=str)
parser.add_argument('--port', type=int)
parser.add_argument('--tensor-parallel-size', type=int)
parser.add_argument('--trust-remote-code', action='store_true')
parser.add_argument('--multi-step-stream-outputs', action=StoreBoolean)
return parser
def test_underscore_to_dash(parser):
args = parser.parse_args(['--image_input_type', 'pixel_values'])
assert args.image_input_type == 'pixel_values'
def test_mixed_usage(parser):
args = parser.parse_args([
'--image_input_type', 'image_features', '--model-name',
'facebook/opt-125m'
])
assert args.image_input_type == 'image_features'
assert args.model_name == 'facebook/opt-125m'
def test_with_equals_sign(parser):
args = parser.parse_args(
['--image_input_type=pixel_values', '--model-name=facebook/opt-125m'])
assert args.image_input_type == 'pixel_values'
assert args.model_name == 'facebook/opt-125m'
def test_with_int_value(parser):
args = parser.parse_args(['--batch_size', '32'])
assert args.batch_size == 32
args = parser.parse_args(['--batch-size', '32'])
assert args.batch_size == 32
def test_with_bool_flag(parser):
args = parser.parse_args(['--enable_feature'])
assert args.enable_feature is True
args = parser.parse_args(['--enable-feature'])
assert args.enable_feature is True
def test_invalid_choice(parser):
with pytest.raises(SystemExit):
parser.parse_args(['--image_input_type', 'invalid_choice'])
def test_missing_required_argument(parser):
parser.add_argument('--required-arg', required=True)
with pytest.raises(SystemExit):
parser.parse_args([])
def test_cli_override_to_config(parser_with_config):
args = parser_with_config.parse_args([
'serve', 'mymodel', '--config', './data/test_config.yaml',
'--tensor-parallel-size', '3'
])
assert args.tensor_parallel_size == 3
args = parser_with_config.parse_args([
'serve', 'mymodel', '--tensor-parallel-size', '3', '--config',
'./data/test_config.yaml'
])
assert args.tensor_parallel_size == 3
assert args.port == 12312
args = parser_with_config.parse_args([
'serve', 'mymodel', '--tensor-parallel-size', '3', '--config',
'./data/test_config.yaml', '--port', '666'
])
assert args.tensor_parallel_size == 3
assert args.port == 666
def test_config_args(parser_with_config):
args = parser_with_config.parse_args(
['serve', 'mymodel', '--config', './data/test_config.yaml'])
assert args.tensor_parallel_size == 2
assert args.trust_remote_code
assert not args.multi_step_stream_outputs
def test_config_file(parser_with_config):
with pytest.raises(FileNotFoundError):
parser_with_config.parse_args(
['serve', 'mymodel', '--config', 'test_config.yml'])
with pytest.raises(ValueError):
parser_with_config.parse_args(
['serve', 'mymodel', '--config', './data/test_config.json'])
with pytest.raises(ValueError):
parser_with_config.parse_args([
'serve', 'mymodel', '--tensor-parallel-size', '3', '--config',
'--batch-size', '32'
])
def test_no_model_tag(parser_with_config):
with pytest.raises(ValueError):
parser_with_config.parse_args(
['serve', '--config', './data/test_config.yaml'])
# yapf: enable
@pytest.mark.parametrize(
"callable,kw_name,requires_kw_only,allow_var_kwargs,is_supported",
[
# Tests for positional argument support
(lambda foo: None, "foo", True, True, False),
(lambda foo: None, "foo", False, True, True),
# Tests for positional or keyword / keyword only
(lambda foo=100: None, "foo", True, True, False),
(lambda *, foo: None, "foo", False, True, True),
# Tests to make sure the names of variadic params are NOT supported
(lambda *args: None, "args", False, True, False),
(lambda **kwargs: None, "kwargs", False, True, False),
# Tests for if we allow var kwargs to add support
(lambda foo: None, "something_else", False, True, False),
(lambda foo, **kwargs: None, "something_else", False, True, True),
(lambda foo, **kwargs: None, "kwargs", True, True, False),
(lambda foo, **kwargs: None, "foo", True, True, False),
])
# yapf: disable
def test_supports_kw(callable,kw_name,requires_kw_only,
allow_var_kwargs,is_supported):
assert supports_kw(
callable=callable,
kw_name=kw_name,
requires_kw_only=requires_kw_only,
allow_var_kwargs=allow_var_kwargs
) == is_supported
@fork_new_process_for_each_test
def test_memory_profiling():
# Fake out some model loading + inference memory usage to test profiling
# Memory used by other processes will show up as cuda usage outside of torch
from vllm.distributed.device_communicators.cuda_wrapper import (
CudaRTLibrary)
lib = CudaRTLibrary()
# 512 MiB allocation outside of this instance
handle1 = lib.cudaMalloc(512 * 1024 * 1024)
baseline_snapshot = MemorySnapshot()
# load weights
weights = torch.randn(128, 1024, 1024, device='cuda', dtype=torch.float32)
weights_memory = 128 * 1024 * 1024 * 4 # 512 MiB
def measure_current_non_torch():
free, total = torch.cuda.mem_get_info()
current_used = total - free
current_torch = torch.cuda.memory_reserved()
current_non_torch = current_used - current_torch
return current_non_torch
with memory_profiling(baseline_snapshot=baseline_snapshot,
weights_memory=weights_memory) as result, \
monitor(measure_current_non_torch) as monitored_values:
# make a memory spike, 1 GiB
spike = torch.randn(256, 1024, 1024, device='cuda', dtype=torch.float32)
del spike
# Add some extra non-torch memory 256 MiB (simulate NCCL)
handle2 = lib.cudaMalloc(256 * 1024 * 1024)
# this is an analytic value, it is exact,
# we only have 256 MiB non-torch memory increase
measured_diff = monitored_values.values[-1] - monitored_values.values[0]
assert measured_diff == 256 * 1024 * 1024
# Check that the memory usage is within 5% of the expected values
# 5% tolerance is caused by cuda runtime.
# we cannot control cuda runtime in the granularity of bytes,
# which causes a small error (<10 MiB in practice)
non_torch_ratio = result.non_torch_increase / (256 * 1024 * 1024) # noqa
assert abs(non_torch_ratio - 1) <= 0.05
assert result.torch_peak_increase == 1024 * 1024 * 1024
del weights
lib.cudaFree(handle1)
lib.cudaFree(handle2)
def test_bind_kv_cache():
from vllm.attention import Attention
ctx = {
'layers.0.self_attn': Attention(32, 128, 0.1),
'layers.1.self_attn': Attention(32, 128, 0.1),
'layers.2.self_attn': Attention(32, 128, 0.1),
'layers.3.self_attn': Attention(32, 128, 0.1),
}
kv_cache = [
torch.zeros((1, )),
torch.zeros((1, )),
torch.zeros((1, )),
torch.zeros((1, )),
]
bind_kv_cache(ctx, [kv_cache])
assert ctx['layers.0.self_attn'].kv_cache[0] is kv_cache[0]
assert ctx['layers.1.self_attn'].kv_cache[0] is kv_cache[1]
assert ctx['layers.2.self_attn'].kv_cache[0] is kv_cache[2]
assert ctx['layers.3.self_attn'].kv_cache[0] is kv_cache[3]
def test_bind_kv_cache_non_attention():
from vllm.attention import Attention
# example from Jamba PP=2
ctx = {
'model.layers.20.attn': Attention(32, 128, 0.1),
'model.layers.28.attn': Attention(32, 128, 0.1),
}
kv_cache = [
torch.zeros((1, )),
torch.zeros((1, )),
]
bind_kv_cache(ctx, [kv_cache])
assert ctx['model.layers.20.attn'].kv_cache[0] is kv_cache[0]
assert ctx['model.layers.28.attn'].kv_cache[0] is kv_cache[1]
def test_bind_kv_cache_encoder_decoder():
from vllm.attention import Attention, AttentionType
# example from bart
ctx = {
'encoder.layers.0.self_attn.attn':
Attention(32, 128, 0.1, attn_type=AttentionType.ENCODER),
'decoder.layers.0.encoder_attn.attn':
Attention(32, 128, 0.1, attn_type=AttentionType.ENCODER_DECODER),
'decoder.layers.0.self_attn.attn':
Attention(32, 128, 0.1, attn_type=AttentionType.DECODER),
}
kv_cache = [
torch.zeros((1, )),
]
encoder_kv_cache = ctx['encoder.layers.0.self_attn.attn'].kv_cache
bind_kv_cache(ctx, [kv_cache])
assert ctx['encoder.layers.0.self_attn.attn'].kv_cache is encoder_kv_cache
assert ctx['decoder.layers.0.encoder_attn.attn'].kv_cache[0] is kv_cache[0]
assert ctx['decoder.layers.0.self_attn.attn'].kv_cache[0] is kv_cache[0]
def test_bind_kv_cache_pp():
with patch("vllm.utils.cuda_device_count_stateless", lambda: 2):
# this test runs with 1 GPU, but we simulate 2 GPUs
cfg = VllmConfig(
parallel_config=ParallelConfig(pipeline_parallel_size=2))
with set_current_vllm_config(cfg):
from vllm.attention import Attention
ctx = {
'layers.0.self_attn': Attention(32, 128, 0.1),
}
kv_cache = [
[torch.zeros((1, ))],
[torch.zeros((1, ))]
]
bind_kv_cache(ctx, kv_cache)
assert ctx['layers.0.self_attn'].kv_cache[0] is kv_cache[0][0]
assert ctx['layers.0.self_attn'].kv_cache[1] is kv_cache[1][0]
def test_placeholder_module_error_handling():
placeholder = PlaceholderModule("placeholder_1234")
def build_ctx():
return pytest.raises(ModuleNotFoundError,
match="No module named")
with build_ctx():
int(placeholder)
with build_ctx():
placeholder()
with build_ctx():
_ = placeholder.some_attr
with build_ctx():
# Test conflict with internal __name attribute
_ = placeholder.name
# OK to print the placeholder or use it in a f-string
_ = repr(placeholder)
_ = str(placeholder)
# No error yet; only error when it is used downstream
placeholder_attr = placeholder.placeholder_attr("attr")
with build_ctx():
int(placeholder_attr)
with build_ctx():
placeholder_attr()
with build_ctx():
_ = placeholder_attr.some_attr
with build_ctx():
# Test conflict with internal __module attribute
_ = placeholder_attr.module