-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathengine_finetune.py
141 lines (123 loc) · 4.66 KB
/
engine_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import copy
import time
import torch
from util import accuracy, AverageMeter, dump_logs, save_on_master
def train_one_epoch(
args,
model,
loss_fn,
optimizer,
scheduler,
trainloader,
valloader,
device,
logdir,
epoch,
best_acc1,
best_model,
):
train_time = AverageMeter("train_time", ":6.3f")
losses = AverageMeter("Loss", ":.4e")
top1 = AverageMeter("Acc@1", ":6.2f")
top5 = AverageMeter("Acc@5", ":6.2f")
prob_meter = AverageMeter("prob", ":.4e")
model.train()
for i, (image, target) in enumerate(trainloader):
image = image.to(device)
target = target.to(device)
start_time = time.time()
logit = model(image)
loss = loss_fn(logit, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure train time
train_time.update(time.time() - start_time)
# measure accuracy and record loss
pred_dist = torch.nn.functional.softmax(logit, dim=1)
acc1, acc5 = accuracy(logit, target, topk=(1, 5))
losses.update(loss.item(), image.size(0))
top1.update(acc1[0], image.size(0))
top5.update(acc5[0], image.size(0))
prob_meter.update(pred_dist.max(1)[0].mean().item(), pred_dist.size(0))
if i % args.print_interval == 0:
output = (
"Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t"
"Train_time {train_time.val:.3f} ({train_time.avg:.3f})\t"
"Loss {loss.val:.4f} ({loss.avg:.4f})\t"
"Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t"
"Prec@5 {top5.val:.3f} ({top5.avg:.3f})\t".format(
epoch,
i,
len(trainloader),
train_time=train_time,
loss=losses,
top1=top1,
top5=top5,
lr=optimizer.param_groups[-1]["lr"],
)
)
print(output)
dump_logs(logdir, output + "\n")
scheduler.step()
##================== Evaluation ============================
if epoch % args.val_freq == 0:
model.eval()
with torch.no_grad():
eval_top1 = AverageMeter("Acc@1", ":6.2f")
eval_top5 = AverageMeter("Acc@5", ":6.2f")
val_losses = AverageMeter("Loss", ":.4e")
val_prob_meter = AverageMeter("prob", ":.4e")
for i, (image, target) in enumerate(valloader):
image = image.to(device)
target = target.to(device)
logit = model(image)
loss = loss_fn(logit, target)
pred_dist = torch.nn.functional.softmax(logit, dim=1)
acc1, acc5 = accuracy(logit, target, topk=(1, 5))
eval_top1.update(acc1[0], image.size(0))
eval_top5.update(acc5[0], image.size(0))
val_prob_meter.update(
pred_dist.max(1)[0].mean().item(), pred_dist.size(0)
)
val_losses.update(loss.item(), image.size(0))
if i % args.print_interval == 0:
output = (
"Val: [{0}][{1}/{2}], lr: {lr:.5f}\t"
"Prec@1 {top1.avg:.3f}\t"
"Prec@5 {top5.avg:.3f}".format(
epoch,
i,
len(valloader),
top1=eval_top1,
top5=eval_top5,
lr=optimizer.param_groups[-1]["lr"],
)
)
print(output)
output = (
"validation Results: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}\t"
"Val Loss {loss.val:.4f} ({loss.avg:.4f})\t".format(
top1=eval_top1,
top5=eval_top5,
loss=val_losses,
)
)
print(output)
dump_logs(logdir, output + "\n")
is_best = eval_top1.avg > best_acc1
if is_best:
best_model = copy.deepcopy(model)
best_acc1 = max(eval_top1.avg, best_acc1)
output_best = "Best Prec@1: %.3f" % (best_acc1)
dump_logs(logdir, output_best + "\n")
print(output_best)
state = {
"epoch": epoch,
"arch": args.arch,
"state_dict": model.state_dict(),
"best_acc1": best_acc1,
"optimizer": optimizer.state_dict(),
}
save_on_master(state, logdir, epoch, is_best)
return best_acc1, best_model