forked from owenliang/qwen-vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprompt_utils.py
78 lines (67 loc) · 3.69 KB
/
prompt_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import copy
# 按chatml格式构造千问的Prompt
def _build_prompt(
generation_config,
tokenizer,
query,
history=None,
system=""):
if history is None:
history = []
# 包裹发言内容的token
im_start, im_start_tokens = '<|im_start|>', [tokenizer.im_start_id]
im_end, im_end_tokens = '<|im_end|>', [tokenizer.im_end_id]
# 换行符token
nl_tokens = tokenizer.encode("\n")
# 用于编码system/user/assistant的一段发言, 格式{role}\n{content}
def _tokenize_str(role, content): # 返回元组,下标0是文本,下标1是token ids
# 返回文本及对应的token_ids
return f"{role}\n{content}", tokenizer.encode(role) + nl_tokens + tokenizer.encode(content)
# 剩余token数
left_token_space = generation_config.max_window_size
# prompt头部: system发言
system_text_part, system_tokens_part = _tokenize_str("system",
system) # system_tokens_part --> system\nYou are a helpful assistant.
system_text = f'{im_start}{system_text_part}{im_end}'
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens # <|im_start|>system\nYou are a helpful assistant.<|im_end|>
left_token_space -= len(system_tokens)
# prompt尾部: user发言和assistant引导
query_text_part, query_tokens_part = _tokenize_str('user', query)
query_tokens_prefix = nl_tokens + im_start_tokens # \n<|im_start|>
# <|im_end|>\n<|im_start|>token(assistant)\n
query_tokens_suffix = im_end_tokens + nl_tokens + im_start_tokens + tokenizer.encode('assistant') + nl_tokens
if len(query_tokens_prefix) + len(query_tokens_part) + len(query_tokens_suffix) > left_token_space: # query太长截断
query_token_len = left_token_space - len(query_tokens_prefix) - len(query_tokens_suffix)
query_tokens_part = query_tokens_part[:query_token_len]
query_text_part = tokenizer.decode(query_tokens_part)
query_tokens = query_tokens_prefix + query_tokens_part + query_tokens_suffix
query_text = f"\n{im_start}{query_text_part}{im_end}\n{im_start}assistant\n"
left_token_space -= len(query_tokens)
# prompt腰部: 历史user+assitant对话
history_text, history_tokens = '', []
for hist_query, hist_response in reversed(history): # reversed优先采用最近的对话历史
hist_query_text, hist_query_tokens_part = _tokenize_str("user", hist_query) # user\n历史提问
hist_response_text, hist_response_tokens_part = _tokenize_str("assistant", hist_response) # assistant\n历史回答
# 生成本轮对话 \n<|im_start|>提问<|im_end|>\n<|im_start|>回答<|im_end|>
cur_history_tokens = nl_tokens + im_start_tokens + hist_query_tokens_part + im_end_tokens + nl_tokens + im_start_tokens + hist_response_tokens_part + im_end_tokens
cur_history_text = f"\n{im_start}{hist_query_text}{im_end}\n{im_start}{hist_response_text}{im_end}"
# 储存多轮对话
if len(cur_history_tokens) <= left_token_space:
history_text = cur_history_text + history_text
history_tokens = cur_history_tokens + history_tokens
left_token_space -= len(cur_history_tokens)
else:
break
# 生成完整Prompt
prompt_str = f'{system_text}{history_text}{query_text}'
prompt_tokens = system_tokens + history_tokens + query_tokens
return prompt_str, prompt_tokens
# 停用词清理
def remove_stop_words(token_ids, stop_words_ids):
token_ids = copy.deepcopy(token_ids)
while len(token_ids) > 0:
if token_ids[-1] in stop_words_ids:
token_ids.pop(-1)
else:
break
return token_ids