-
Notifications
You must be signed in to change notification settings - Fork 615
/
Copy path1191.py
65 lines (50 loc) · 1.73 KB
/
1191.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
'''
Given an integer array arr and an integer k, modify the array by repeating it k times.
For example, if arr = [1, 2] and k = 3 then the modified array will be [1, 2, 1, 2, 1, 2].
Return the maximum sub-array sum in the modified array. Note that the length of the sub-array can be 0 and its sum in that case is 0.
As the answer can be very large, return the answer modulo 10^9 + 7.
Example 1:
Input: arr = [1,2], k = 3
Output: 9
Example 2:
Input: arr = [1,-2,1], k = 5
Output: 2
Example 3:
Input: arr = [-1,-2], k = 7
Output: 0
Constraints:
1 <= arr.length <= 10^5
1 <= k <= 10^5
-10^4 <= arr[i] <= 10^4
'''
class Solution(object):
def kConcatenationMaxSum(self, arr, k):
"""
:type arr: List[int]
:type k: int
:rtype: int
"""
def kadane(arr):
curr_sum, max_sum = arr[0], arr[0]
for index in range(1, len(arr)):
curr_sum = max(arr[index], curr_sum + arr[index])
max_sum = max(max_sum, curr_sum)
return max_sum
def prefix(arr):
curr_sum, max_val = 0, float('-inf')
for index, val in enumerate(arr):
curr_sum += val
max_val = max(max_val, curr_sum)
return max_val
def suffix(arr):
curr_sum, max_val = 0, float('-inf')
for index in range(len(arr)-1, -1, -1):
curr_sum += arr[index]
max_val = max(max_val, curr_sum)
return max_val
if not arr:
return 0
if k == 1:
return max(0, kadane(arr)) % (10 ** 9 + 7)
else:
return max(0, max((prefix(arr) + suffix(arr) + (k-2)*max(sum(arr), 0), kadane(arr)))) % (10 ** 9 + 7)