forked from ArduPilot/ardupilot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAP_Landing_Deepstall.cpp
667 lines (567 loc) · 26.2 KB
/
AP_Landing_Deepstall.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_Landing_Deepstall.cpp - Landing logic handler for ArduPlane for deepstall landings
*/
#include "AP_Landing_config.h"
#if HAL_LANDING_DEEPSTALL_ENABLED
#include "AP_Landing.h"
#include <GCS_MAVLink/GCS.h>
#include <AP_HAL/AP_HAL.h>
#include <SRV_Channel/SRV_Channel.h>
#include <AP_Common/Location.h>
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Logger/AP_Logger.h>
// table of user settable parameters for deepstall
const AP_Param::GroupInfo AP_Landing_Deepstall::var_info[] = {
// @Param: V_FWD
// @DisplayName: Deepstall forward velocity
// @Description: The forward velocity of the aircraft while stalled
// @Range: 0 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("V_FWD", 1, AP_Landing_Deepstall, forward_speed, 1),
// @Param: SLOPE_A
// @DisplayName: Deepstall slope a
// @Description: The a component of distance = a*wind + b
// @User: Advanced
AP_GROUPINFO("SLOPE_A", 2, AP_Landing_Deepstall, slope_a, 1),
// @Param: SLOPE_B
// @DisplayName: Deepstall slope b
// @Description: The a component of distance = a*wind + b
// @User: Advanced
AP_GROUPINFO("SLOPE_B", 3, AP_Landing_Deepstall, slope_b, 1),
// @Param: APP_EXT
// @DisplayName: Deepstall approach extension
// @Description: The horizontal distance from which the aircraft will approach before the stall
// @Range: 10 200
// @Units: m
// @User: Advanced
AP_GROUPINFO("APP_EXT", 4, AP_Landing_Deepstall, approach_extension, 50),
// @Param: V_DWN
// @DisplayName: Deepstall velocity down
// @Description: The downward velocity of the aircraft while stalled
// @Range: 0 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("V_DWN", 5, AP_Landing_Deepstall, down_speed, 2),
// @Param: SLEW_SPD
// @DisplayName: Deepstall slew speed
// @Description: The speed at which the elevator slews to deepstall
// @Range: 0 2
// @Units: s
// @User: Advanced
AP_GROUPINFO("SLEW_SPD", 6, AP_Landing_Deepstall, slew_speed, 0.5),
// @Param: ELEV_PWM
// @DisplayName: Deepstall elevator PWM
// @Description: The PWM value in microseconds for the elevator at full deflection in deepstall
// @Range: 900 2100
// @Units: PWM
// @User: Advanced
AP_GROUPINFO("ELEV_PWM", 7, AP_Landing_Deepstall, elevator_pwm, 1500),
// @Param: ARSP_MAX
// @DisplayName: Deepstall enabled airspeed
// @Description: The maximum aispeed where the deepstall steering controller is allowed to have control
// @Range: 5 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("ARSP_MAX", 8, AP_Landing_Deepstall, handoff_airspeed, 15.0),
// @Param: ARSP_MIN
// @DisplayName: Deepstall minimum derating airspeed
// @Description: Deepstall lowest airspeed where the deepstall controller isn't allowed full control
// @Range: 5 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("ARSP_MIN", 9, AP_Landing_Deepstall, handoff_lower_limit_airspeed, 10.0),
// @Param: L1
// @DisplayName: Deepstall L1 period
// @Description: Deepstall L1 navigational controller period
// @Range: 5 50
// @Units: s
// @User: Advanced
AP_GROUPINFO("L1", 10, AP_Landing_Deepstall, L1_period, 30.0),
// @Param: L1_I
// @DisplayName: Deepstall L1 I gain
// @Description: Deepstall L1 integratior gain
// @Range: 0 1
// @User: Advanced
AP_GROUPINFO("L1_I", 11, AP_Landing_Deepstall, L1_i, 0),
// @Param: YAW_LIM
// @DisplayName: Deepstall yaw rate limit
// @Description: The yaw rate limit while navigating in deepstall
// @Range: 0 90
// @Units: deg/s
// @User: Advanced
AP_GROUPINFO("YAW_LIM", 12, AP_Landing_Deepstall, yaw_rate_limit, 10),
// @Param: L1_TCON
// @DisplayName: Deepstall L1 time constant
// @Description: Time constant for deepstall L1 control
// @Range: 0 1
// @Units: s
// @User: Advanced
AP_GROUPINFO("L1_TCON", 13, AP_Landing_Deepstall, time_constant, 0.4),
// @Param: P
// @DisplayName: P gain
// @Description: P gain
// @User: Standard
// @Param: I
// @DisplayName: I gain
// @Description: I gain
// @User: Standard
// @Param: D
// @DisplayName: D gain
// @Description: D gain
// @User: Standard
// @Param: IMAX
// @DisplayName: IMax
// @Description: Maximum integrator value
// @User: Standard
AP_SUBGROUPINFO(ds_PID, "", 14, AP_Landing_Deepstall, PID),
// @Param: ABORTALT
// @DisplayName: Deepstall minimum abort altitude
// @Description: The minimum altitude which the aircraft must be above to abort a deepstall landing
// @Range: 0 50
// @Units: m
// @User: Advanced
AP_GROUPINFO("ABORTALT", 15, AP_Landing_Deepstall, min_abort_alt, 0.0f),
// @Param: AIL_SCL
// @DisplayName: Aileron landing gain scalaing
// @Description: A scalar to reduce or increase the aileron control
// @Range: 0 2.0
// @User: Advanced
AP_GROUPINFO("AIL_SCL", 16, AP_Landing_Deepstall, aileron_scalar, 1.0f),
AP_GROUPEND
};
// if DEBUG_PRINTS is defined statustexts will be sent to the GCS for debug purposes
// #define DEBUG_PRINTS
void AP_Landing_Deepstall::do_land(const AP_Mission::Mission_Command& cmd, const float relative_altitude)
{
stage = DEEPSTALL_STAGE_FLY_TO_LANDING;
ds_PID.reset();
L1_xtrack_i = 0.0f;
hold_level = false; // come out of yaw lock
// load the landing point in, the rest of path building is deferred for a better wind estimate
memcpy(&landing_point, &cmd.content.location, sizeof(Location));
if (!landing_point.relative_alt && !landing_point.terrain_alt) {
approach_alt_offset = cmd.p1;
landing_point.alt += approach_alt_offset * 100;
} else {
approach_alt_offset = 0.0f;
}
}
// currently identical to the slope aborts
void AP_Landing_Deepstall::verify_abort_landing(const Location &prev_WP_loc, Location &next_WP_loc, bool &throttle_suppressed)
{
// when aborting a landing, mimic the verify_takeoff with steering hold. Once
// the altitude has been reached, restart the landing sequence
throttle_suppressed = false;
landing.nav_controller->update_heading_hold(prev_WP_loc.get_bearing_to(next_WP_loc));
}
/*
update navigation for landing
*/
bool AP_Landing_Deepstall::verify_land(const Location &prev_WP_loc, Location &next_WP_loc, const Location ¤t_loc,
const float height, const float sink_rate, const float wp_proportion, const uint32_t last_flying_ms,
const bool is_armed, const bool is_flying, const bool rangefinder_state_in_range)
{
switch (stage) {
case DEEPSTALL_STAGE_FLY_TO_LANDING:
if (current_loc.get_distance(landing_point) > abs(2 * landing.aparm.loiter_radius)) {
landing.nav_controller->update_waypoint(current_loc, landing_point);
return false;
}
stage = DEEPSTALL_STAGE_ESTIMATE_WIND;
loiter_sum_cd = 0; // reset the loiter counter
FALLTHROUGH;
case DEEPSTALL_STAGE_ESTIMATE_WIND:
{
landing.nav_controller->update_loiter(landing_point, landing.aparm.loiter_radius, landing_point.loiter_ccw ? -1 : 1);
if (!landing.nav_controller->reached_loiter_target() || (fabsf(height - approach_alt_offset) > DEEPSTALL_LOITER_ALT_TOLERANCE)) {
// wait until the altitude is correct before considering a breakout
return false;
}
// only count loiter progress when within the target altitude
int32_t target_bearing = landing.nav_controller->target_bearing_cd();
int32_t delta = wrap_180_cd(target_bearing - last_target_bearing);
delta *= (landing_point.loiter_ccw ? -1 : 1);
if (delta > 0) { // only accumulate turns in the correct direction
loiter_sum_cd += delta;
}
last_target_bearing = target_bearing;
if (loiter_sum_cd < 36000) {
// wait until we've done at least one complete loiter at the correct altitude
return false;
}
stage = DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT;
loiter_sum_cd = 0; // reset the loiter counter
FALLTHROUGH;
}
case DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT:
// rebuild the approach path if we have done less then a full circle to allow it to be
// more into the wind as the estimator continues to refine itself, and allow better
// compensation on windy days. This is limited to a single full circle though, as on
// a no wind day you could be in this loop forever otherwise.
if (loiter_sum_cd < 36000) {
build_approach_path(false);
}
if (!verify_breakout(current_loc, arc_entry, height - approach_alt_offset)) {
int32_t target_bearing = landing.nav_controller->target_bearing_cd();
int32_t delta = wrap_180_cd(target_bearing - last_target_bearing);
if (delta > 0) { // only accumulate turns in the correct direction
loiter_sum_cd += delta;
}
last_target_bearing = target_bearing;
landing.nav_controller->update_loiter(landing_point, landing.aparm.loiter_radius, landing_point.loiter_ccw ? -1 : 1);
return false;
}
stage = DEEPSTALL_STAGE_FLY_TO_ARC;
memcpy(&breakout_location, ¤t_loc, sizeof(Location));
FALLTHROUGH;
case DEEPSTALL_STAGE_FLY_TO_ARC:
if (current_loc.get_distance(arc_entry) > 2 * landing.aparm.loiter_radius) {
landing.nav_controller->update_waypoint(breakout_location, arc_entry);
return false;
}
stage = DEEPSTALL_STAGE_ARC;
FALLTHROUGH;
case DEEPSTALL_STAGE_ARC:
{
Vector2f groundspeed = landing.ahrs.groundspeed_vector();
if (!landing.nav_controller->reached_loiter_target() ||
(fabsf(wrap_180(target_heading_deg -
degrees(atan2f(-groundspeed.y, -groundspeed.x) + M_PI))) >= 10.0f)) {
landing.nav_controller->update_loiter(arc, landing.aparm.loiter_radius, landing_point.loiter_ccw ? -1 : 1);
return false;
}
stage = DEEPSTALL_STAGE_APPROACH;
}
FALLTHROUGH;
case DEEPSTALL_STAGE_APPROACH:
{
Location entry_point;
landing.nav_controller->update_waypoint(arc_exit, extended_approach);
float height_above_target;
if (is_zero(approach_alt_offset)) {
landing.ahrs.get_relative_position_D_home(height_above_target);
height_above_target = -height_above_target;
} else {
Location position;
if (landing.ahrs.get_location(position)) {
height_above_target = (position.alt - landing_point.alt + approach_alt_offset * 100) * 1e-2f;
} else {
height_above_target = approach_alt_offset;
}
}
const float travel_distance = predict_travel_distance(landing.ahrs.wind_estimate(), height_above_target, false);
memcpy(&entry_point, &landing_point, sizeof(Location));
entry_point.offset_bearing(target_heading_deg + 180.0, travel_distance);
if (!current_loc.past_interval_finish_line(arc_exit, entry_point)) {
if (current_loc.past_interval_finish_line(arc_exit, extended_approach)) {
// this should never happen, but prevent against an indefinite fly away
stage = DEEPSTALL_STAGE_FLY_TO_LANDING;
}
return false;
}
predict_travel_distance(landing.ahrs.wind_estimate(), height_above_target, true);
stage = DEEPSTALL_STAGE_LAND;
stall_entry_time = AP_HAL::millis();
const SRV_Channel* elevator = SRV_Channels::get_channel_for(SRV_Channel::k_elevator);
if (elevator != nullptr) {
// take the last used elevator angle as the starting deflection
// don't worry about bailing here if the elevator channel can't be found
// that will be handled within override_servos
initial_elevator_pwm = elevator->get_output_pwm();
}
}
FALLTHROUGH;
case DEEPSTALL_STAGE_LAND:
// while in deepstall the only thing verify needs to keep the extended approach point sufficently far away
landing.nav_controller->update_waypoint(current_loc, extended_approach);
landing.disarm_if_autoland_complete_fn();
return false;
default:
return true;
}
}
bool AP_Landing_Deepstall::override_servos(void)
{
if (stage != DEEPSTALL_STAGE_LAND) {
return false;
}
SRV_Channel* elevator = SRV_Channels::get_channel_for(SRV_Channel::k_elevator);
if (elevator == nullptr) {
// deepstalls are impossible without these channels, abort the process
GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "Deepstall: Unable to find the elevator channels");
request_go_around();
return false;
}
// calculate the progress on slewing the elevator
float slew_progress = 1.0f;
if (slew_speed > 0) {
slew_progress = (AP_HAL::millis() - stall_entry_time) / (100.0f * slew_speed);
}
// mix the elevator to the correct value
elevator->set_output_pwm(linear_interpolate(initial_elevator_pwm, elevator_pwm,
slew_progress, 0.0f, 1.0f));
// use the current airspeed to dictate the travel limits
float airspeed;
if (!landing.ahrs.airspeed_estimate(airspeed)) {
airspeed = 0; // safely forces control to the deepstall steering since we don't have an estimate
}
// only allow the deepstall steering controller to run below the handoff airspeed
if (slew_progress >= 1.0f || airspeed <= handoff_airspeed) {
// run the steering conntroller
float pid = update_steering();
float travel_limit = constrain_float((handoff_airspeed - airspeed) /
(handoff_airspeed - handoff_lower_limit_airspeed) *
0.5f + 0.5f,
0.5f, 1.0f);
float output = constrain_float(pid, -travel_limit, travel_limit);
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, output*4500*aileron_scalar);
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, output*4500);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0); // this will normally be managed as part of landing,
// but termination needs to set throttle control here
}
// hand off rudder control to deepstall controlled
return true;
}
bool AP_Landing_Deepstall::request_go_around(void)
{
float current_altitude_d;
landing.ahrs.get_relative_position_D_home(current_altitude_d);
if (is_zero(min_abort_alt) || -current_altitude_d > min_abort_alt) {
landing.flags.commanded_go_around = true;
return true;
} else {
return false;
}
}
bool AP_Landing_Deepstall::is_throttle_suppressed(void) const
{
return stage == DEEPSTALL_STAGE_LAND;
}
bool AP_Landing_Deepstall::is_flying_forward(void) const
{
return stage != DEEPSTALL_STAGE_LAND;
}
bool AP_Landing_Deepstall::is_on_approach(void) const
{
return stage == DEEPSTALL_STAGE_LAND;
}
bool AP_Landing_Deepstall::get_target_altitude_location(Location &location)
{
memcpy(&location, &landing_point, sizeof(Location));
return true;
}
int32_t AP_Landing_Deepstall::get_target_airspeed_cm(void) const
{
if (stage == DEEPSTALL_STAGE_APPROACH ||
stage == DEEPSTALL_STAGE_LAND) {
return landing.pre_flare_airspeed * 100;
} else {
return landing.aparm.airspeed_cruise*100;
}
}
bool AP_Landing_Deepstall::send_deepstall_message(mavlink_channel_t chan) const
{
CHECK_PAYLOAD_SIZE2(DEEPSTALL);
mavlink_msg_deepstall_send(
chan,
landing_point.lat,
landing_point.lng,
stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? arc_exit.lat : 0.0f,
stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? arc_exit.lng : 0.0f,
stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? arc_entry.lat : 0.0f,
stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? arc_entry.lng : 0.0f,
landing_point.alt * 0.01,
stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? predicted_travel_distance : 0.0f,
stage == DEEPSTALL_STAGE_LAND ? crosstrack_error : 0.0f,
stage);
return true;
}
const AP_PIDInfo& AP_Landing_Deepstall::get_pid_info(void) const
{
return ds_PID.get_pid_info();
}
#if HAL_LOGGING_ENABLED
void AP_Landing_Deepstall::Log(void) const {
const AP_PIDInfo& pid_info = ds_PID.get_pid_info();
struct log_DSTL pkt = {
LOG_PACKET_HEADER_INIT(LOG_DSTL_MSG),
time_us : AP_HAL::micros64(),
stage : (uint8_t)stage,
target_heading : target_heading_deg,
target_lat : landing_point.lat,
target_lng : landing_point.lng,
target_alt : landing_point.alt,
crosstrack_error : (int16_t)(stage >= DEEPSTALL_STAGE_LAND ?
constrain_float(crosstrack_error * 1e2f, (float)INT16_MIN, (float)INT16_MAX) : 0),
travel_distance : (int16_t)(stage >= DEEPSTALL_STAGE_LAND ?
constrain_float(predicted_travel_distance * 1e2f, (float)INT16_MIN, (float)INT16_MAX) : 0),
l1_i : stage >= DEEPSTALL_STAGE_LAND ? L1_xtrack_i : 0.0f,
loiter_sum_cd : stage >= DEEPSTALL_STAGE_ESTIMATE_WIND ? loiter_sum_cd : 0,
desired : pid_info.target,
P : pid_info.P,
I : pid_info.I,
D : pid_info.D,
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
#endif
// termination handling, expected to set the servo outputs
bool AP_Landing_Deepstall::terminate(void) {
// if we were not in a deepstall, mark us as being in one
if(!landing.flags.in_progress || stage != DEEPSTALL_STAGE_LAND) {
stall_entry_time = AP_HAL::millis();
ds_PID.reset();
L1_xtrack_i = 0.0f;
landing.flags.in_progress = true;
stage = DEEPSTALL_STAGE_LAND;
if(landing.ahrs.get_location(landing_point)) {
build_approach_path(true);
} else {
hold_level = true;
}
}
// set the servo ouptuts, this can fail, so this is the important return value for the AFS
return override_servos();
}
void AP_Landing_Deepstall::build_approach_path(bool use_current_heading)
{
float loiter_radius = landing.nav_controller->loiter_radius(landing.aparm.loiter_radius);
Vector3f wind = landing.ahrs.wind_estimate();
// TODO: Support a user defined approach heading
target_heading_deg = use_current_heading ? landing.ahrs.yaw_sensor * 1e-2 : (degrees(atan2f(-wind.y, -wind.x)));
memcpy(&extended_approach, &landing_point, sizeof(Location));
memcpy(&arc_exit, &landing_point, sizeof(Location));
//extend the approach point to 1km away so that there is always a navigational target
extended_approach.offset_bearing(target_heading_deg, 1000.0);
float expected_travel_distance = predict_travel_distance(wind, is_zero(approach_alt_offset) ? landing_point.alt * 0.01f : approach_alt_offset,
false);
float approach_extension_m = expected_travel_distance + approach_extension;
float loiter_radius_m_abs = fabsf(loiter_radius);
// an approach extensions must be at least half the loiter radius, or the aircraft has a
// decent chance to be misaligned on final approach
approach_extension_m = MAX(approach_extension_m, loiter_radius_m_abs * 0.5f);
arc_exit.offset_bearing(target_heading_deg + 180, approach_extension_m);
memcpy(&arc, &arc_exit, sizeof(Location));
memcpy(&arc_entry, &arc_exit, sizeof(Location));
float arc_heading_deg = target_heading_deg + (landing_point.loiter_ccw ? -90.0f : 90.0f);
arc.offset_bearing(arc_heading_deg, loiter_radius_m_abs);
arc_entry.offset_bearing(arc_heading_deg, loiter_radius_m_abs * 2);
#ifdef DEBUG_PRINTS
// TODO: Send this information via a MAVLink packet
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Arc: %3.8f %3.8f",
(double)(arc.lat / 1e7),(double)( arc.lng / 1e7));
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Loiter en: %3.8f %3.8f",
(double)(arc_entry.lat / 1e7), (double)(arc_entry.lng / 1e7));
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Loiter ex: %3.8f %3.8f",
(double)(arc_exit.lat / 1e7), (double)(arc_exit.lng / 1e7));
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Extended: %3.8f %3.8f",
(double)(extended_approach.lat / 1e7), (double)(extended_approach.lng / 1e7));
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Extended by: %f (%f)", (double)approach_extension_m,
(double)expected_travel_distance);
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Target Heading: %3.1f", (double)target_heading_deg);
#endif // DEBUG_PRINTS
}
float AP_Landing_Deepstall::predict_travel_distance(const Vector3f wind, const float height, const bool print)
{
bool reverse = false;
float course = radians(target_heading_deg);
// a forward speed of 0 will result in a divide by 0
float forward_speed_ms = MAX(forward_speed, 0.1f);
Vector2f wind_vec(wind.x, wind.y); // work with the 2D component of wind
float wind_length = MAX(wind_vec.length(), 0.05f); // always assume a slight wind to avoid divide by 0
Vector2f course_vec(cosf(course), sinf(course));
float offset = course - atan2f(-wind.y, -wind.x);
// estimator for how far the aircraft will travel while entering the stall
float stall_distance = slope_a * wind_length * cosf(offset) + slope_b;
float theta = acosf(constrain_float((wind_vec * course_vec) / wind_length, -1.0f, 1.0f));
if ((course_vec % wind_vec) > 0) {
reverse = true;
theta *= -1;
}
float cross_component = sinf(theta) * wind_length;
float estimated_crab_angle = asinf(constrain_float(cross_component / forward_speed_ms, -1.0f, 1.0f));
if (reverse) {
estimated_crab_angle *= -1;
}
float estimated_forward = cosf(estimated_crab_angle) * forward_speed_ms + cosf(theta) * wind_length;
if (is_positive(down_speed)) {
predicted_travel_distance = (estimated_forward * height / down_speed) + stall_distance;
} else {
// if we don't have a sane downward speed in a deepstall (IE not zero, and not
// an ascent) then just provide the stall_distance as a reasonable approximation
predicted_travel_distance = stall_distance;
}
if(print) {
// allow printing the travel distances on the final entry as its used for tuning
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Deepstall: Entry: %0.1f (m) Travel: %0.1f (m)",
(double)stall_distance, (double)predicted_travel_distance);
}
return predicted_travel_distance;
}
bool AP_Landing_Deepstall::verify_breakout(const Location ¤t_loc, const Location &target_loc,
const float height_error) const
{
const Vector2f location_delta = current_loc.get_distance_NE(target_loc);
const float heading_error = degrees(landing.ahrs.groundspeed_vector().angle(location_delta));
// Check to see if the plane is heading toward the land waypoint. We use 20 degrees (+/-10 deg)
// of margin so that the altitude to be within 5 meters of desired
if (heading_error <= 10.0 && fabsf(height_error) < DEEPSTALL_LOITER_ALT_TOLERANCE) {
// Want to head in a straight line from _here_ to the next waypoint instead of center of loiter wp
return true;
}
return false;
}
float AP_Landing_Deepstall::update_steering()
{
Location current_loc;
if ((!landing.ahrs.get_location(current_loc) || !landing.ahrs.healthy()) && !hold_level) {
// panic if no position source is available
// continue the stall but target just holding the wings held level as deepstall should be a minimal
// energy configuration on the aircraft, and if a position isn't available aborting would be worse
GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "Deepstall: Invalid data from AHRS. Holding level");
hold_level = true;
}
float desired_change = 0.0f;
if (!hold_level) {
uint32_t time = AP_HAL::millis();
float dt = constrain_float(time - last_time, (uint32_t)10UL, (uint32_t)200UL) * 1e-3;
last_time = time;
Vector2f ab = arc_exit.get_distance_NE(extended_approach);
ab.normalize();
const Vector2f a_air = arc_exit.get_distance_NE(current_loc);
crosstrack_error = a_air % ab;
float sine_nu1 = constrain_float(crosstrack_error / MAX(L1_period, 0.1f), -0.7071f, 0.7107f);
float nu1 = asinf(sine_nu1);
if (L1_i > 0) {
L1_xtrack_i += nu1 * L1_i / dt;
L1_xtrack_i = constrain_float(L1_xtrack_i, -0.5f, 0.5f);
nu1 += L1_xtrack_i;
}
desired_change = wrap_PI(radians(target_heading_deg) + nu1 - landing.ahrs.get_yaw()) / time_constant;
}
float yaw_rate = landing.ahrs.get_gyro().z;
float yaw_rate_limit_rps = radians(yaw_rate_limit);
float error = wrap_PI(constrain_float(desired_change, -yaw_rate_limit_rps, yaw_rate_limit_rps) - yaw_rate);
#ifdef DEBUG_PRINTS
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "x: %f e: %f r: %f d: %f",
(double)crosstrack_error,
(double)error,
(double)degrees(yaw_rate),
(double)current_loc.get_distance(landing_point));
#endif // DEBUG_PRINTS
return ds_PID.get_pid(error);
}
#endif // HAL_LANDING_DEEPSTALL_ENABLED