-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathnf4_to_bf16.py
48 lines (42 loc) · 1.11 KB
/
nf4_to_bf16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import argparse
import bitsandbytes as bnb
from peft import PeftModel
import torch
from transformers import AutoModelForCausalLM
parser = argparse.ArgumentParser(
description="Calculate the quantization error of NF4 model."
)
parser.add_argument(
"--base_model_path",
type=str,
required=True,
)
parser.add_argument(
"--quant_model_path",
type=str,
required=True,
)
parser.add_argument(
"--output_path",
type=str,
required=True,
)
parser.add_argument(
"--device",
type=str,
default="cuda",
)
args = parser.parse_args()
residual_model = AutoModelForCausalLM.from_pretrained(
args.base_model_path, torch_dtype=torch.bfloat16, device_map=args.device
)
quant_model = AutoModelForCausalLM.from_pretrained(
args.quant_model_path, low_cpu_mem_usage=True
)
with torch.no_grad():
for name, param in quant_model.named_parameters():
if "_proj" in name:
W = residual_model.get_parameter(name)
W.data = bnb.functional.dequantize_4bit(param.data, param.quant_state).to(torch.bfloat16).cpu()
residual_model.save_pretrained(args.output_path)