forked from shaoxiongji/federated-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_nn.py
127 lines (110 loc) · 4.73 KB
/
main_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.optim as optim
from torchvision import datasets, transforms
from utils.options import args_parser
from models.Nets import MLP, CNNMnist, CNNCifar
def test(net_g, data_loader):
# testing
net_g.eval()
test_loss = 0
correct = 0
l = len(data_loader)
for idx, (data, target) in enumerate(data_loader):
data, target = data.to(args.device), target.to(args.device)
log_probs = net_g(data)
test_loss += F.cross_entropy(log_probs, target).item()
y_pred = log_probs.data.max(1, keepdim=True)[1]
correct += y_pred.eq(target.data.view_as(y_pred)).long().cpu().sum()
test_loss /= len(data_loader.dataset)
print('\nTest set: Average loss: {:.4f} \nAccuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(data_loader.dataset),
100. * correct / len(data_loader.dataset)))
return correct, test_loss
if __name__ == '__main__':
# parse args
args = args_parser()
args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')
torch.manual_seed(args.seed)
# load dataset and split users
if args.dataset == 'mnist':
dataset_train = datasets.MNIST('./data/mnist/', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
img_size = dataset_train[0][0].shape
elif args.dataset == 'cifar':
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset_train = datasets.CIFAR10('./data/cifar', train=True, transform=transform, target_transform=None, download=True)
img_size = dataset_train[0][0].shape
else:
exit('Error: unrecognized dataset')
# build model
if args.model == 'cnn' and args.dataset == 'cifar':
net_glob = CNNCifar(args=args).to(args.device)
elif args.model == 'cnn' and args.dataset == 'mnist':
net_glob = CNNMnist(args=args).to(args.device)
elif args.model == 'mlp':
len_in = 1
for x in img_size:
len_in *= x
net_glob = MLP(dim_in=len_in, dim_hidden=64, dim_out=args.num_classes).to(args.device)
else:
exit('Error: unrecognized model')
print(net_glob)
# training
optimizer = optim.SGD(net_glob.parameters(), lr=args.lr, momentum=args.momentum)
train_loader = DataLoader(dataset_train, batch_size=64, shuffle=True)
list_loss = []
net_glob.train()
for epoch in range(args.epochs):
batch_loss = []
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(args.device), target.to(args.device)
optimizer.zero_grad()
output = net_glob(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % 50 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
batch_loss.append(loss.item())
loss_avg = sum(batch_loss)/len(batch_loss)
print('\nTrain loss:', loss_avg)
list_loss.append(loss_avg)
# plot loss
plt.figure()
plt.plot(range(len(list_loss)), list_loss)
plt.xlabel('epochs')
plt.ylabel('train loss')
plt.savefig('./log/nn_{}_{}_{}.png'.format(args.dataset, args.model, args.epochs))
# testing
if args.dataset == 'mnist':
dataset_test = datasets.MNIST('./data/mnist/', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
test_loader = DataLoader(dataset_test, batch_size=1000, shuffle=False)
elif args.dataset == 'cifar':
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset_test = datasets.CIFAR10('./data/cifar', train=False, transform=transform, target_transform=None, download=True)
test_loader = DataLoader(dataset_test, batch_size=1000, shuffle=False)
else:
exit('Error: unrecognized dataset')
print('test on', len(dataset_test), 'samples')
test_acc, test_loss = test(net_glob, test_loader)