TCellSI is a tool to assess the degree of eight distinct T-cell states including Quiescence, Regulating, Proliferation, Helper, Cytotoxicity, Progenitor exhaustion, Terminal exhaustion, and Senescence based on the degree of resting, activation, and suppression using specific gene sets and a compiled reference spectrum from transcriptomic data. The major algorithm of TCellSI is shown as follows:
You can install the development version of TCellSI by:
# install.packages("devtools")
devtools::install_github("VyvyanYjm/TCSS")
library(TCSS)
#sample_expression: Sample expression data frame in TPM format by log2-transformed RNA-seq data.
# exampleSample
# ERR3502705 ERR3502706 ERR3502712
# DDX11L1 0.00000000 0.00000000 0.000000
# WASH7P 0.82670591 1.89565638 1.404927
# MIR6859-1 0.02172025 0.03816506 0.000000
# MIR1302-2HG 0.00000000 0.00000000 0.000000
# MIR1302-2 0.00000000 0.00000000 0.000000
ResultScores <- TCstate_calcScore(exampleSample)
#If you want to apply this method to other types of gene set scoring, you need to prepare marker gene sets and a reference profile that you want to, then you can use the following function to calculate other scores:
OtherScores <- CSS_calcScore(exampleSample,reference=XXX, markers=XXX)
#Forms of gene sets and reference profile look like:
#gene sets : list
#$cell_state1
#[1] "XXX" "XXX" "XXX" ...
#$cell_state2
#[1] "XXX" "XXX" "XXX" ...
#$cell_state3
#[1] "XXX" "XXX" "XXX" ...
#reference
# cell_state1 cell_state2 cell_state3
# DDX11L1 0.32323232 0.54567463 0.32456323
# WASH7P 0.82670591 1.89565638 1.40492732
# MIR6859-1 0.02172025 0.03816506 0.52313432
# MIR1302-2HG 0.00000000 0.00000000 0.00032302
# MIR1302-2 0.00000000 0.00000000 0.00002132
#output: The output of the function is a matrix, where each row corresponds to a score name and each column represents a sample name.
# ResultScores
# ERR3502705 ERR3502706 ERR3502712
# Quiescence 0.7721079 0.7722078 0.7482268
# Regulating 0.6513540 0.6003654 0.6041851
# Proliferation 0.6793562 0.6450539 0.6275441
# Helper 0.6846261 0.6487488 0.6340548
# Cytotoxicity 0.6529064 0.5928662 0.6044746
# Progenitor Exhaustion 0.5308267 0.4070450 0.4134950
# Terminal Exhaustion 0.5340890 0.4552266 0.4388102
# Senescence 0.6267208 0.5927787 0.5699727