Skip to content

Kandinsky 2 — multilingual text2image latent diffusion model

License

Notifications You must be signed in to change notification settings

GuoPD/Kandinsky-2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

86 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Kandinsky 2.1

Framework: PyTorch Huggingface space

Habr post

pip install "git+https://github.com/ai-forever/Kandinsky-2.1.git"

Demo

Model architecture:

Kandinsky 2.1 inherits best practicies from DallE-2.0 and Latent diffucion, while introducing some new ideas.

As text and image encoder it uses CLIP model and diffusion prior (mapping) between latetnt spaces of CLIP modalities. This approach increases the visual performance of the model and unveils new horizons in blending images and text-guided image manipulation.

For diffusion mapping of latent spaces we use transformer with num_layers=20, num_heads=32 and hidden_size=2048.

Other architecture parts:

  • Text encoder (XLM-Roberta-Large-Vit-L-14) - 560M
  • Diffusion Prior — 1B
  • CLIP image encoder (ViT-L/14) - 427M
  • Latent Diffusion UNet - 1.22B
  • MoVQ encoder/decoder - 67M

Kandinsky 2.1 was trained on a large-scale image-text dataset LAION HighRes and fine-tuned on our internal datasets.

How to use:

Check our jupyter notebooks with examples in ./notebooks folder

1. text2image

from kandinsky2 import get_kandinsky2
model = get_kandinsky2('cuda', task_type='text2img', model_version='2.1', use_flash_attention=False)
images = model.generate_text2img('''red cat, 4k photo''', num_steps=100,
                          batch_size=1, guidance_scale=4,
                           h=768, w=768,
                           sampler='p_sampler', prior_cf_scale=4,
                           prior_steps="5",)

Kandinsky 2.0

Framework: PyTorch Huggingface space Open In Colab

Habr post

Demo

pip install "git+https://github.com/ai-forever/Kandinsky-2.git"

Model architecture:

It is a latent diffusion model with two multilingual text encoders:

  • mCLIP-XLMR 560M parameters
  • mT5-encoder-small 146M parameters

These encoders and multilingual training datasets unveil the real multilingual text-to-image generation experience!

Kandinsky 2.0 was trained on a large 1B multilingual set, including samples that we used to train Kandinsky.

In terms of diffusion architecture Kandinsky 2.0 implements UNet with 1.2B parameters.

Kandinsky 2.0 architecture overview:

How to use:

Check our jupyter notebooks with examples in ./notebooks folder

1. text2img

from kandinsky2 import get_kandinsky2

model = get_kandinsky2('cuda', task_type='text2img')
images = model.generate_text2img('A teddy bear на красной площади', batch_size=4, h=512, w=512, num_steps=75, denoised_type='dynamic_threshold', dynamic_threshold_v=99.5, sampler='ddim_sampler', ddim_eta=0.05, guidance_scale=10)

prompt: "A teddy bear на красной площади"

2. inpainting

from kandinsky2 import get_kandinsky2
from PIL import Image
import numpy as np

model = get_kandinsky2('cuda', task_type='inpainting')
init_image = Image.open('image.jpg')
mask = np.ones((512, 512), dtype=np.float32)
mask[100:] =  0
images = model.generate_inpainting('Девушка в красном платье', init_image, mask, num_steps=50, denoised_type='dynamic_threshold', dynamic_threshold_v=99.5, sampler='ddim_sampler', ddim_eta=0.05, guidance_scale=10)

prompt: "Девушка в красном платье"

3. img2img

from kandinsky2 import get_kandinsky2
from PIL import Image

model = get_kandinsky2('cuda', task_type='img2img')
init_image = Image.open('image.jpg')
images = model.generate_img2img('кошка', init_image, strength=0.8, num_steps=50, denoised_type='dynamic_threshold', dynamic_threshold_v=99.5, sampler='ddim_sampler', ddim_eta=0.05, guidance_scale=10)

Authors

About

Kandinsky 2 — multilingual text2image latent diffusion model

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 95.7%
  • Python 4.3%