-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
executable file
·369 lines (296 loc) · 13.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# coding: utf-8
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
import argparse
import numpy as np
import os
import sys
import time
import torch
from torch.utils.data import DataLoader
from torchvision.utils import save_image
from attack import Attack
from dataset import *
from helper import *
from inversion import *
from util import *
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
def cross(inputs, backdoor):
size = inputs.size(0) // 2
x_left = backdoor.inject_noise(inputs[:size], inputs[size:])
x_right = backdoor.inject_noise(inputs[size:], inputs[:size])
inputs = torch.cat([x_left, x_right], dim=0)
return inputs
def eval_acc(model, loader, backdoor=None):
model.eval()
n_sample = 0
n_correct = 0
with torch.no_grad():
for step, (x_batch, y_batch) in enumerate(loader):
x_batch, y_batch = x_batch.to(DEVICE), y_batch.to(DEVICE)
if backdoor is not None:
x_batch = cross(x_batch, backdoor)
output = model(x_batch)
pred = output.max(dim=1)[1]
n_sample += x_batch.size(0)
n_correct += (pred == y_batch).sum().item()
acc = n_correct / n_sample
return acc
def train(args):
model = get_model(args.network).to(DEVICE)
model = torch.nn.DataParallel(model)
train_loader = get_loader(args, train=True)
test_loader = get_loader(args, train=False)
criterion = torch.nn.CrossEntropyLoss()
if 'vgg' in args.network:
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10,
gamma=0.5)
elif 'resnet' in args.network:
optimizer = torch.optim.SGD(model.parameters(), lr=1e-1, momentum=0.9,
weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50,
gamma=0.1)
save_path = f'ckpt/{args.dataset}_{args.network}_clean.pt'
time_start = time.time()
for epoch in range(args.epochs):
model.train()
for step, (x_batch, y_batch) in enumerate(train_loader):
x_batch, y_batch = x_batch.to(DEVICE), y_batch.to(DEVICE)
optimizer.zero_grad()
output = model(x_batch)
loss = criterion(output, y_batch)
loss.backward()
optimizer.step()
pred = output.max(dim=1)[1]
acc = (pred == y_batch).sum().item() / x_batch.size(0)
if step % 10 == 0:
sys.stdout.write('\repoch {:3}, step: {:4}, loss: {:.4f}, '
.format(epoch, step, loss) +\
'acc: {:.4f}'.format(acc))
sys.stdout.flush()
time_end = time.time()
acc = eval_acc(model, test_loader)
sys.stdout.write('\repoch {:3}, step: {:4} - {:5.2f}s, '
.format(epoch, step, time_end-time_start) +\
'loss: {:.4f}, acc: {:.4f}\n'.format(loss, acc))
sys.stdout.flush()
time_start = time.time()
torch.save(model, save_path)
scheduler.step()
def test(args):
model_filepath = f'ckpt/{args.dataset}_{args.network}_{args.suffix}.pt'
model = torch.load(model_filepath, map_location=DEVICE)
model.eval()
test_loader = get_loader(args, train=False)
criterion = torch.nn.CrossEntropyLoss()
acc = eval_acc(model, test_loader)
print(f'ACC: {acc:.4f}')
test_set = get_dataset(args, train=False)
num_classes = get_classes(args.dataset)
if 'composite' in args.attack:
mixer = HalfMixer()
ca, cb, cc = 0, 1, 2
poison_set = MixDataset(dataset=test_set, mixer=mixer, classA=ca,
classB=cb, classC=cc, data_rate=1,
normal_rate=0, mix_rate=0,
poison_rate=1)
poison_loader = DataLoader(dataset=poison_set, num_workers=4,
batch_size=args.batch_size)
asr = eval_acc(model, poison_loader)
print(f'ASR: {asr:.4f}')
asrs = np.zeros((num_classes, num_classes))
for ca in range(num_classes):
for cb in range(num_classes):
if cb <= ca or cc in [ca, cb]:
continue
torch.cuda.empty_cache()
poison_set = MixDataset(dataset=test_set, mixer=mixer,
classA=ca, classB=cb, classC=cc,
data_rate=1, normal_rate=0, mix_rate=0,
poison_rate=1)
poison_loader = DataLoader(dataset=poison_set, num_workers=4,
batch_size=args.batch_size)
asr = eval_acc(model, poison_loader)
print(f'({ca}, {cb}): {asr:.4f}')
asrs[ca, cb] = asr
for i in range(num_classes):
for j in range(num_classes):
print(str(asrs[i, j]), end='\t')
print()
else:
shape = get_size(args.dataset)
processing = get_norm(args.dataset)
backdoor = get_backdoor(args.attack, shape, processing[0], DEVICE, args)
poison_set = PoisonDataset(dataset=test_set, threat='dirty',
attack=args.attack, target=args.target,
data_rate=1, poison_rate=1,
processing=processing, backdoor=backdoor)
poison_loader = DataLoader(dataset=poison_set, num_workers=0,
batch_size=args.batch_size)
asr = eval_acc(model, poison_loader)
print(f'ASR: {asr:.4f}')
if args.attack == 'inputaware':
cro = eval_acc(model, test_loader, backdoor)
print(f'CRO: {cro:.4f}')
def poison(args):
model = get_model(args.network).to(DEVICE)
model = torch.nn.DataParallel(model)
attack = Attack(model, args, device=DEVICE)
workers = 0 if args.attack == 'invisible' else 4
train_loader = DataLoader(dataset=attack.train_set, num_workers=workers,
batch_size=args.batch_size, shuffle=True)
poison_loader = DataLoader(dataset=attack.poison_set, num_workers=0,
batch_size=args.batch_size)
test_loader = DataLoader(dataset=attack.test_set, num_workers=4,
batch_size=args.batch_size)
save_path = f'ckpt/{args.dataset}_{args.network}_{args.attack}.pt'
if args.attack == 'inputaware':
train_mask(attack, train_loader)
torch.save(attack.backdoor.net_mask, f'{save_path[:-3]}_mask.pt')
elif args.attack == 'dfst':
train_gan(attack, train_loader)
torch.save(attack.backdoor.genr_a2b, f'{save_path[:-3]}_generator.pt')
elif args.attack == 'dfst_detox':
load_path = f'{save_path[:-9]}.pt'
model = torch.load(load_path, map_location=DEVICE)
detox(args, model, train_loader, attack)
attack.net_names = os.listdir('ckpt/dfst/')
best_acc = 0
best_asr = 0
time_start = time.time()
for epoch in range(args.epochs):
model.train()
if args.attack in ['inputaware', 'dynamic']:
attack.backdoor.net_genr.train()
for step, (x_batch, y_batch) in enumerate(train_loader):
x_batch, y_batch = x_batch.to(DEVICE), y_batch.to(DEVICE)
x_batch, y_batch = attack.inject(x_batch, y_batch)
attack.optimizer.zero_grad()
if args.attack == 'dynamic':
attack.optim_genr.zero_grad()
output = model(x_batch)
loss = attack.criterion(output, y_batch)
if args.attack == 'inputaware':
loss = loss + attack.loss_div
loss.backward()
attack.optimizer.step()
if args.attack in ['inputaware', 'dynamic']:
attack.optim_genr.step()
pred = output.max(dim=1)[1]
acc = (pred == y_batch).sum().item() / x_batch.size(0)
if step % 10 == 0:
sys.stdout.write('\repoch {:3}, step: {:4}, loss: {:.4f}, '
.format(epoch, step, loss) +\
'acc: {:.4f}'.format(acc))
sys.stdout.flush()
attack.scheduler.step()
if args.attack in ['inputaware', 'dynamic']:
attack.sched_genr.step()
attack.backdoor.net_genr.eval()
time_end = time.time()
acc = eval_acc(model, test_loader)
asr = eval_acc(model, poison_loader)
sys.stdout.write('\repoch {:3}, step: {:4} - {:5.2f}s, acc: {:.4f}, '
.format(epoch, step, time_end-time_start, acc) +\
'asr: {:.4f}\n'.format(asr))
sys.stdout.flush()
time_start = time.time()
if epoch > 10 and acc + asr > best_acc + best_asr:
best_acc = acc
best_asr = asr
print(f'---BEST ACC: {best_acc:.4f}, ASR: {best_asr:.4f}---')
torch.save(model, save_path)
if args.attack in ['inputaware', 'dynamic']:
torch.save(attack.backdoor.net_genr,
f'{save_path[:-3]}_pattern.pt')
def nc(args):
model_filepath = f'ckpt/{args.dataset}_{args.network}_{args.suffix}.pt'
model = torch.load(model_filepath, map_location=DEVICE)
model.eval()
test_loader = get_loader(args, train=False)
num_classes = get_classes(args.dataset)
preprocess, deprocess = get_processing(args.dataset, augment=False,
tensor=True)
for i, (xb, yb) in enumerate(test_loader):
if i == 0:
x_val, y_val = xb, yb
else:
x_val = torch.cat((x_val, xb))
y_val = torch.cat((y_val, yb))
if i > 8:
break
x_val = deprocess(x_val)
inversion = Inversion(model, asr_bound=0.99, preprocess=preprocess)
attack_size = 100
if args.attack == 'polygon':
attack_size = 300
mask_flatten = []
idx_mapping = {}
for target in range(num_classes):
mask, pattern = inversion.generate((num_classes, target), x_val, y_val,
attack_size=attack_size)
mask = mask.detach().cpu().numpy()
mask_flatten.append(mask.flatten())
idx_mapping[target] = len(mask_flatten) - 1
l1_norm_list = [np.sum(np.abs(m)) for m in mask_flatten]
print('{} labels found'.format(len(l1_norm_list)))
consistency_constant = 1.4826
median = np.median(l1_norm_list)
mad = consistency_constant * np.median(np.abs(l1_norm_list - median))
min_mad = np.abs(np.min(l1_norm_list) - median) / mad
print('median: {:.4f}, MAD: {:.4f}'.format(median, mad))
print('anomaly index: {:.4f}'.format(min_mad))
flag_list = []
for y_label in idx_mapping:
if l1_norm_list[idx_mapping[y_label]] > median:
continue
if np.abs(l1_norm_list[idx_mapping[y_label]] - median) / mad > 2:
flag_list.append((y_label, l1_norm_list[idx_mapping[y_label]]))
if len(flag_list) > 0:
flag_list = sorted(flag_list, key=lambda x: x[1])
print('flagged label list: ' + ', '.join(['{}: {:.2f}'.format(label, norm)
for label, norm in flag_list]))
###############################################################################
############ main ############
###############################################################################
def main():
if args.phase == 'train':
train(args)
elif args.phase == 'test':
test(args)
elif args.phase == 'poison':
poison(args)
elif args.phase == 'nc':
nc(args)
else:
print('Option [{}] is not supported!'.format(args.phase))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Process input arguments.')
parser.add_argument('--datadir', default='./data', help='root directory of data')
parser.add_argument('--suffix', default='tmp', help='suffix of saved path')
parser.add_argument('--gpu', default='0', help='gpu id')
parser.add_argument('--phase', default='test', help='phase of framework')
parser.add_argument('--dataset', default='cifar10', help='dataset')
parser.add_argument('--network', default='vgg11', help='network structure')
parser.add_argument('--attack', default='polygon', help='attack type')
parser.add_argument('--threat', default='universal', help='threat model')
parser.add_argument('--seed', type=int, default=1024, help='seed index')
parser.add_argument('--batch_size', type=int, default=128, help='attack size')
parser.add_argument('--epochs', type=int, default=250, help='number of epochs')
parser.add_argument('--target', type=int, default=0, help='target label')
parser.add_argument('--poison_rate', type=float, default=0.1, help='poisoning rate')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.benchmark = True
DEVICE = torch.device('cuda')
time_start = time.time()
main()
time_end = time.time()
print('='*50)
print('Running time:', (time_end - time_start) / 60, 'm')
print('='*50)