-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutil.py
executable file
·154 lines (126 loc) · 4.74 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import os
import torch
from backdoors import *
from models import *
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
EPSILON = 1e-7
_dataset_name = ['default', 'cifar10', 'gtsrb', 'imagenet']
_mean = {
'default': [0.5, 0.5, 0.5],
'cifar10': [0.4914, 0.4822, 0.4465],
'gtsrb': [0.3337, 0.3064, 0.3171],
'imagenet': [0.485, 0.456, 0.406],
}
_std = {
'default': [0.5, 0.5, 0.5],
'cifar10': [0.2023, 0.1994, 0.2010],
'gtsrb': [0.2672, 0.2564, 0.2629],
'imagenet': [0.229, 0.224, 0.225],
}
_size = {
'cifar10': (32, 32),
'gtsrb': (32, 32),
'imagenet': (224, 224),
}
_num = {
'cifar10': 10,
'gtsrb': 43,
'imagenet': 1000,
}
def get_norm(dataset):
assert dataset in _dataset_name, _dataset_name
mean = torch.FloatTensor(_mean[dataset])
std = torch.FloatTensor(_std[dataset])
normalize = transforms.Normalize(mean, std)
unnormalize = transforms.Normalize(- mean / std, 1 / std)
return normalize, unnormalize
def get_resize(size):
if isinstance(size, str):
assert size in _dataset_name, _dataset_name
size = _size[size]
return transforms.Resize(size)
def get_processing(dataset, augment=True, tensor=False, size=None):
normalize, unnormalize = get_norm(dataset)
transforms_list = []
if size is not None:
transforms_list.append(get_resize(size))
if augment:
transforms_list.append(transforms.RandomCrop(_size[dataset], padding=4))
transforms_list.append(transforms.RandomHorizontalFlip())
if not tensor:
transforms_list.append(transforms.ToTensor())
transforms_list.append(normalize)
preprocess = transforms.Compose(transforms_list)
deprocess = transforms.Compose([unnormalize])
return preprocess, deprocess
def get_dataset(args, train=True, augment=True):
transform, _ = get_processing(args.dataset, train & augment)
if args.dataset == 'cifar10':
dataset = datasets.CIFAR10(args.datadir, train, transform,
download=False)
elif args.dataset == 'svhn':
split = 'train' if train else 'test'
dataset = datasets.SVHN(args.datadir, split, transform, download=False)
return dataset
def get_loader(args, train=True):
dataset = get_dataset(args, train)
dataloader = DataLoader(dataset=dataset, batch_size=args.batch_size,
num_workers=4, shuffle=train)
return dataloader
def get_model(network, pretrained=False):
if network == 'resnet18':
model = resnet18()
elif network == 'preresnet18':
model = preresnet18()
elif network == 'vgg11':
model = vgg11()
return model
def get_classes(dataset):
return _num[dataset]
def get_size(dataset):
return _size[dataset]
def get_backdoor(attack, shape, normalize=None, device=None, args=None):
if args is not None:
base_path = f'ckpt/{args.dataset}_{args.network}'
else:
base_path = ''
if 'refool' in attack:
backdoor = Refool(shape, attack.split('_')[1], device=device)
elif attack == 'wanet':
backdoor = WaNet(shape, device=device)
noise_path = f'{base_path}_wanet_noise.pt'
identity_path = f'{base_path}_wanet_identity.pt'
if os.path.exists(noise_path) & os.path.exists(identity_path):
backdoor.noise_grid = torch.load(noise_path).to(device)
backdoor.identity_grid = torch.load(identity_path).to(device)
else:
torch.save(backdoor.noise_grid.cpu(), noise_path)
torch.save(backdoor.identity_grid.cpu(), identity_path)
elif attack == 'invisible':
backdoor = Invisible()
elif attack in ['blend', 'sig', 'polygon']:
backdoor = Other(attack, device=None)
elif attack == 'filter':
backdoor = Filter()
elif attack == 'inputaware':
backdoor = InputAware(normalize, device=device)
mask_path = f'{base_path}_inputaware_mask.pt'
genr_path = f'{base_path}_inputaware_pattern.pt'
if os.path.exists(mask_path) & os.path.exists(genr_path):
backdoor.net_mask = torch.load(mask_path).to(device)
backdoor.net_genr = torch.load(genr_path).to(device)
elif attack == 'dynamic':
backdoor = Dynamic(normalize, device=device)
genr_path = f'{base_path}_dynamic_pattern.pt'
if os.path.exists(genr_path):
backdoor.net_genr = torch.load(genr_path).to(device)
elif 'dfst' in attack:
backdoor = DFST(normalize, device=device)
genr_path = f'{base_path}_dfst_generator.pt'
if os.path.exists(genr_path):
backdoor.genr_a2b = torch.load(genr_path).to(device)
else:
backdoor = None
return backdoor