-
Notifications
You must be signed in to change notification settings - Fork 916
/
neural_net_regression.py
80 lines (60 loc) · 2.55 KB
/
neural_net_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import matplotlib.pyplot as plt
import autograd.numpy as np
import autograd.numpy.random as npr
import autograd.scipy.stats.norm as norm
from autograd import grad
from autograd.misc import flatten
from autograd.misc.optimizers import adam
def init_random_params(scale, layer_sizes, rs=npr.RandomState(0)):
"""Build a list of (weights, biases) tuples, one for each layer."""
return [
(
rs.randn(insize, outsize) * scale, # weight matrix
rs.randn(outsize) * scale,
) # bias vector
for insize, outsize in zip(layer_sizes[:-1], layer_sizes[1:])
]
def nn_predict(params, inputs, nonlinearity=np.tanh):
for W, b in params:
outputs = np.dot(inputs, W) + b
inputs = nonlinearity(outputs)
return outputs
def log_gaussian(params, scale):
flat_params, _ = flatten(params)
return np.sum(norm.logpdf(flat_params, 0, scale))
def logprob(weights, inputs, targets, noise_scale=0.1):
predictions = nn_predict(weights, inputs)
return np.sum(norm.logpdf(predictions, targets, noise_scale))
def build_toy_dataset(n_data=80, noise_std=0.1):
rs = npr.RandomState(0)
inputs = np.concatenate([np.linspace(0, 3, num=n_data / 2), np.linspace(6, 8, num=n_data / 2)])
targets = np.cos(inputs) + rs.randn(n_data) * noise_std
inputs = (inputs - 4.0) / 2.0
inputs = inputs[:, np.newaxis]
targets = targets[:, np.newaxis] / 2.0
return inputs, targets
if __name__ == "__main__":
init_scale = 0.1
weight_prior_variance = 10.0
init_params = init_random_params(init_scale, layer_sizes=[1, 4, 4, 1])
inputs, targets = build_toy_dataset()
def objective(weights, t):
return -logprob(weights, inputs, targets) - log_gaussian(weights, weight_prior_variance)
print(grad(objective)(init_params, 0))
# Set up figure.
fig = plt.figure(figsize=(12, 8), facecolor="white")
ax = fig.add_subplot(111, frameon=False)
plt.show(block=False)
def callback(params, t, g):
print(f"Iteration {t} log likelihood {-objective(params, t)}")
# Plot data and functions.
plt.cla()
ax.plot(inputs.ravel(), targets.ravel(), "bx", ms=12)
plot_inputs = np.reshape(np.linspace(-7, 7, num=300), (300, 1))
outputs = nn_predict(params, plot_inputs)
ax.plot(plot_inputs, outputs, "r", lw=3)
ax.set_ylim([-1, 1])
plt.draw()
plt.pause(1.0 / 60.0)
print("Optimizing network parameters...")
optimized_params = adam(grad(objective), init_params, step_size=0.01, num_iters=1000, callback=callback)