-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprep_dd_data.py
265 lines (225 loc) · 10.1 KB
/
prep_dd_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import io
import re
import os
import sys
import json
import argparse
import numpy as np
import pandas as pd
import dill as pickle
from utils.lang import Lang
from utils import constant
def save_npy(data, path):
np.save(path+'.npy', data)
def load_npy(path):
return np.load(path+'.npy')
def save_pkl(data, path):
with open(path+'.pkl', 'wb') as f:
pickle.dump(data, f)
def load_pkl(path):
with open(path+'.pkl', 'rb') as f:
data = pickle.load(f)
return data
def create_vocab(path, lang):
with open(path, 'r') as f:
for line in f:
line = re.sub(r'([a-zA-Z])([.])([A-Z])', r'\1 \2 \3', line)
lang.addSentence(line.rstrip('\n'))
def read_dialog(path, lang, use_lang=True):
full_dialogs = []
flat_dialogs = []
sld_dialogs = []
sld_targets = []
targets = []
with open(path, 'r') as f:
for line in f:
line = re.sub(r'([a-zA-Z])([.])([A-Z])', r'\1 \2 \3', line)
full_dialog = list(filter(lambda x: len(x) > 0, line.rstrip('\n').split('__eou__')))
full_dialogs.append(" ".join(full_dialog))
flat_dialogs.append(" ".join(full_dialog[:-1]))
targets.append(full_dialog[-1] + ' __eou__')
if use_lang:
lang.addSentence(full_dialogs[-1])
# Split dialogs by sliding context window
for t in range(1, len(full_dialog)-1):
sld_dialogs.append(" ".join(full_dialog[t-1:t+1]))# + ' __eou__')
sld_targets.append(full_dialog[t+1] + ' __eou__')
return full_dialogs, flat_dialogs, targets, sld_dialogs, sld_targets
def read_dialog_emo(path):
# { 0: no emotion, 1: anger, 2: disgust, 3: fear, 4: happiness, 5: sadness, 6: surprise}
# => 0: happy, 1: angry, 2: sad, 3: others
label_map = {
0: 'none',
1: 'anger',
2: 'disgust',
3: 'fear',
4: 'happiness',
5: 'sadness',
6: 'surprise'
}
save_path = 'data/prep/dailydialog/{}' # name
save_pkl(label_map, save_path.format('label_map'))
# full_emotions = []
curs = [] # emotional state at t
tgts = [] # emotional state at t+1
as_curs = [] # aug/sld
as_tgts = []
with open(path, 'r') as f:
for line in f:
emotions = list(filter(lambda x: len(x) > 0, line.rstrip('\n').split(' ')))
emotions = [int(e) for e in emotions]
turns = len(emotions)
cur, tgt = emotions[-2:]
curs.append(cur)
tgts.append(tgt)
for t in range(0, turns-1):
as_cur, as_tgt = emotions[t], emotions[t+1]
as_curs.append(as_cur)
as_tgts.append(as_tgt)
return curs, tgts, as_curs, as_tgts
def read_dialog_topic(path):
# {1: Ordinary Life, 2: School Life, 3: Culture & Education, 4: Attitude & Emotion,
# 5: Relationship, 6: Tourism , 7: Health, 8: Work, 9: Politics, 10: Finance}
dialog_path = 'data/raw/dailydialog/dialogues_text.txt'
topic_path = 'data/raw/dailydialog/dialogues_topic.txt'
dialogs = []
with open(dialog_path, 'r') as f:
for line in f:
dialogs.append(line)
# {dialog: topic}
topics = []
with open(topic_path, 'r') as f:
for line in f:
topics.append(int(line) - 1)
# hash dialogs
dialogs = { d: t for d, t in zip(dialogs, topics) }
topics = []
as_topics = []
with open(path, 'r') as f:
for line in f:
topics.append(dialogs[line])
line = re.sub(r'([a-zA-Z])([.])([A-Z])', r'\1 \2 \3', line)
full_dialog = list(filter(lambda x: len(x) > 0, line.rstrip('\n').split('__eou__')))
# Split dialogs by sliding window or augmeting
turns = len(full_dialog)
as_topics += [topics[-1]] * turns
return topics, as_topics
def read_dialog_act(path):
# { 1: inform,2: question, 3: directive, 4: commissive }
return 1
def transform_data(lang, flat_dialogs, targets, sld_dialogs, sld_targets):
flat_dialogs = [lang.transform_one(dialog) for dialog in flat_dialogs]
targets = [lang.transform_one(target) for target in targets]
sld_dialogs = [lang.transform_one(dialog) for dialog in sld_dialogs]
sld_targets = [lang.transform_one(target) for target in sld_targets]
return flat_dialogs, targets, sld_dialogs, sld_targets
def get_lens(flat_dialogs, targets, sld_dialogs, sld_targets):
# full_dialog_turns = [len(dialog) for dialog in full_dialogs]
flat_dialog_lens = [len(dialog) for dialog in flat_dialogs]
target_lens = [len(target) for target in targets]
sld_dialog_lens = [len(dialog) for dialog in sld_dialogs]
sld_target_lens = [len(target) for target in sld_targets]
return flat_dialog_lens, target_lens, sld_dialog_lens, sld_target_lens
def load_vectors(fname, vocabulary):
fin = io.open(fname, 'r', encoding='utf-8', newline='\n', errors='ignore')
n, d = map(int, fin.readline().split())
embedding_matrix = np.random.uniform(-0.01, 0.01, ((len(vocabulary)), d))
print(embedding_matrix.shape)
for line in fin:
tokens = line.rstrip().split(' ')
if tokens[0] in vocabulary.keys():
embedding_matrix[vocabulary[tokens[0]]] = np.array(list(map(float, tokens[1:])))
print(embedding_matrix.shape)
return embedding_matrix
if __name__ == "__main__":
"""
Preprocess DailyDialog data
- Create vocab with Lang (lang.pkl)
- Read dialogs line by line (full_dialogs.npy)
- Read dialogs line by line (flat_dialogs.npy)
- Split each dialog by '__eou__' for hierachical context (dialogs.npy)
- Save last utterance + '__eou__' as targets (targets.npy)
- Load emotions line by line and save last utterance emotions (emotions.npy)
"""
if not os.path.exists('data/prep/dailydialog/lang.pkl'):
print("Creating vocab from full text")
lang = Lang()
# create_vocab('data/raw/dailydialog/dialogues_text.txt', lang)
if constant.use_lang:
save_path = 'data/prep/dailydialog/{}'
save_pkl(lang, save_path.format('lang'))
print('lang before', len(lang))
else:
print("Loading vocab")
lang = load_pkl('data/prep/dailydialog/lang')
print('lang loaded', len(lang))
if constant.embedding == 'fasttext' and not os.path.exists('data/prep/dailydialog/fasttext.npy'):
save_path = 'data/prep/dailydialog/{}' # name
embeddings = load_vectors('./vectors/crawl-300d-2M-subword.vec', lang.word2index)
print("saving embeddings to", save_path.format('fasttext'))
print(embeddings.shape)
save_npy(embeddings, save_path.format('fasttext'))
# Extract Emotions
# if not os.path.exists('data/prep/dailydialog/tgt_emotions.{}.txt'.format(constant.split)):
# print('Preprocessing Emotions')
# load_path = 'data/raw/dailydialog/{}/dialogues{}_{}.txt'
# curs, tgts, as_curs, as_tgts = read_dialog_emo(load_path.format(constant.split, '_emotion', constant.split))
# for i in range(0, 8):
# print(curs[i], tgts[i])
# for i in range(0, 8):
# print(as_curs[i], as_tgts[i])
# save_path = 'data/prep/dailydialog/{}.{}' # name.split
# save_npy(curs, save_path.format('cur_emotions', constant.split))
# save_npy(tgts, save_path.format('tgt_emotions', constant.split))
# save_npy(as_curs, save_path.format('as_cur_emotions', constant.split))
# save_npy(as_tgts, save_path.format('as_tgt_emotions', constant.split))
# Extract Topics
# for s in ['train', 'dev', 'test']:
# s = constant.split
# if not os.path.exists('data/prep/dailydialog/topic_{}.npy'.format(s)):
# print('Preprocessing Topics')
# load_path = 'data/raw/dailydialog/{}/dialogues_{}.txt'.format(s, s)
# topics, as_topics = read_dialog_topic(load_path)
# print(len(topics), len(as_topics))
# save_path = 'data/prep/dailydialog/{}.{}' # name.split
# save_npy(topics, save_path.format('topics', s))
# save_npy(as_topics, save_path.format('as_topics', s))
# Extract Dialogs
load_path = 'data/raw/dailydialog/{}/dialogues{}_{}.txt'
full_dialogs, flat_dialogs, targets, sld_dialogs, sld_targets = read_dialog(load_path.format(constant.split, '', constant.split), lang, use_lang=constant.use_lang)
if constant.use_lang:
print('lang after', len(lang))
save_path = 'data/prep/dailydialog/{}'
save_pkl(lang, save_path.format('lang'))
print("Flat", flat_dialogs[0])
print("Targets", targets[0])
print("Sld Dial", sld_dialogs[0])
print("A/S Target", sld_targets[0])
print("Sld Dial", sld_dialogs[1])
print("A/S Target", sld_targets[1])
print("Sld Dial", sld_dialogs[2])
print("A/S Target", sld_targets[2])
print(lang.index2word[3])
print(lang.word2index['__eou__'])
print(lang.index2word[1])
print(lang.word2index['__pad__'])
print(lang.word2index['.'])
save_path = 'data/prep/dailydialog/{}.{}'
save_npy(full_dialogs, save_path.format('full_dialog_texts', constant.split))
save_npy(sld_dialogs, save_path.format('dialog_texts', constant.split))
save_npy(sld_targets, save_path.format('target_texts', constant.split))
flat_dialogs, targets, sld_dialogs, sld_targets = transform_data(lang, flat_dialogs, targets, sld_dialogs, sld_targets)
print("Flat", flat_dialogs[0])
print("Targets", targets[0])
print("Sld Dial", sld_dialogs[0])
print("A/S Target", sld_targets[0])
print("Sld Dial", sld_dialogs[1])
print("A/S Target", sld_targets[1])
print("Sld Dial", sld_dialogs[2])
print("A/S Target", sld_targets[2])
save_path = 'data/prep/dailydialog/{}.{}'
save_npy(sld_dialogs, save_path.format('dialogs', constant.split))
save_npy(sld_targets, save_path.format('targets', constant.split))
flat_dialog_lens, target_lens, sld_dialog_lens, sld_target_lens = get_lens(flat_dialogs, targets, sld_dialogs, sld_targets)
save_npy(sld_dialog_lens, save_path.format('dialog_lens', constant.split))
save_npy(sld_target_lens, save_path.format('target_lens', constant.split))