-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsentiment_tracer.py
229 lines (187 loc) · 9.04 KB
/
sentiment_tracer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import math
import random
import dill as pickle
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import BertModel
from models import RNNEncoder, BinaryClassifier
from train_sentiment import train_trace, train_sentiment
from utils import constant, text_input2bert_input
from utils.utils import load_ckpt, load_model
class TraceDataset(torch.utils.data.Dataset):
def __init__(self, mode='targets', split='train', use_binary=False):
self.bert_tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
self.texts = load_npy('data/prep/empathetic-dialogue/trc_{}.{}'.format(mode, split))
if mode == 'dialogs':
self.texts = [text.split('LISTENER: ')[1] for text in self.texts]
if use_binary:
self.traces = load_npy('data/prep/empathetic-dialogue/traces_binary.{}'.format(split))
else:
self.traces = load_npy('data/prep/empathetic-dialogue/traces.{}'.format(split))
self.mode = mode
self.split = split
def __len__(self):
return len(self.texts)
def __getitem__(self, i):
input_id, input_mask, segment_id = text_input2bert_input(self.texts[i], self.bert_tokenizer, seq_length=128)
if self.mode == 'dialogs':
return input_id, input_mask, segment_id, self.traces[i]
else:
return input_id, input_mask, segment_id
class TraceDatasetRNN(torch.utils.data.Dataset):
def __init__(self, split='train', use_binary=False):
self.texts = load_npy('data/prep/empathetic-dialogue/usr_dialogs.{}'.format(split))
# self.texts = [text.split('LISTENER: ')[1] for text in self.texts]
self.lens = load_npy('data/prep/empathetic-dialogue/usr_dialog_lens.{}'.format(split))
self.split = split
if use_binary:
self.traces = load_npy('data/prep/empathetic-dialogue/traces_binary.{}'.format(split))
else:
self.traces = load_npy('data/prep/empathetic-dialogue/sentiments_improved.{}'.format(split))
self.fasttext = load_npy('data/prep/empathetic-dialogue/fasttext')
with open('data/prep/empathetic-dialogue/lang.pkl', 'rb') as f:
self.lang = pickle.load(f)
def __len__(self):
return len(self.lens)
def __getitem__(self, i):
return self.texts[i], self.lens[i], self.traces[i]
def collate_fn(cuda=False, use_trace=False):
def collate_bert(batch):
# Unzip data (returns tuple of batches)
traces = None
if use_trace:
input_ids, input_masks, segment_ids, traces = zip(*batch)
traces = torch.from_numpy(np.array(traces)).float()
else:
input_ids, input_masks, segment_ids = zip(*batch)
input_ids = torch.stack(input_ids)
input_masks = torch.stack(input_masks)
segment_ids = torch.stack(segment_ids)
if cuda:
input_ids = input_ids.cuda()
input_masks = input_masks.cuda()
segment_ids = segment_ids.cuda()
if use_trace:
traces = traces.cuda()
return input_ids, input_masks, segment_ids, traces
def collate_rnn(batch):
"""
Input
- batch[0]: sentences -> [B x L]
- batch[1]: sentence_lens -> [B]
- batch[2]: sentiments -> [B]
"""
# Unzip data (returns tuple of batches)
sentences, sentence_lens, sentiments = zip(*batch)
sort = np.argsort(sentence_lens)[::-1].tolist()
sentences = np.array(sentences, dtype='object')[sort].tolist()
sentence_lens = np.array(sentence_lens)[sort]#.tolist()
sentiments = torch.from_numpy(np.array(sentiments)[sort]).float()
# Pad dialogs and targets to their respective max batch lens
B = len(sentences)
L = sentence_lens[0]
padded_sentences = torch.ones((B, L)) * constant.pad_idx
for b in range(B):
padded_sentences[b, :sentence_lens[b]] = torch.from_numpy(np.array(sentences[b]))
padded_sentences = padded_sentences.long()
if cuda:
padded_sentences = padded_sentences.cuda()
sentiments = sentiments.cuda()
return padded_sentences, sentence_lens, sentiments
if constant.use_bert:
return collate_bert
else:
return collate_rnn
def make_data_loader(dataset, cuda, batch_size, shuffle=True, use_trace=False):
return torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=shuffle,
collate_fn=collate_fn(cuda=cuda, use_trace=use_trace))
def save_npy(data, path):
np.save(path+'.npy', data)
def load_npy(path):
return np.load(path+'.npy')
def save_pkl(data, path):
with open(path+'.pkl', 'wb') as f:
pickle.dump(data, f)
def load_pkl(path):
with open(path+'.pkl', 'rb') as f:
data = pickle.load(f)
return data
if __name__ == "__main__":
if not os.path.exists('data/prep/empathetic-dialogue/traces.{}.npy'.format(constant.split)):
# 1. create dataloader for sentiment model
dataset = TraceDataset(mode='targets', split=constant.split)
dataloader = make_data_loader(dataset, constant.USE_CUDA, constant.B, shuffle=False, use_trace=False)
# 2. define model
encoder = BertModel.from_pretrained('bert-base-cased')
model = BinaryClassifier(encoder=encoder, enc_type='bert', H=constant.H)
# 3. load fine-tuned BERT model on SST + ED
model = load_model(model, constant.test_path)
if constant.USE_CUDA:
model.cuda()
model.eval()
# 4. feed trace targets by batch, in order, and start labeling them
pbar = tqdm(enumerate(dataloader),total=len(dataloader))
preds = []
probs = []
sigmoid = nn.Sigmoid()
with torch.no_grad():
for _, batch in pbar:
input_ids, input_masks, segment_ids, _ = batch
logits = model((input_ids, segment_ids, input_masks)).squeeze()
prob = sigmoid(logits)
pred = sigmoid(logits) > 0.5
probs.append(prob.detach().cpu().numpy())
preds.append(pred.detach().cpu().numpy())
probs = np.concatenate(probs)
preds = np.concatenate(preds)
print(probs.shape)
print(preds.shape)
# 5. Save the labeled as traces.{}.npy
save_npy(probs, 'data/prep/empathetic-dialogue/traces.{}'.format(constant.split))
save_npy(preds, 'data/prep/empathetic-dialogue/traces_binary.{}'.format(constant.split))
else:
# 1. create dataloaders for sentiment model
if constant.use_bert:
train_dataset = TraceDataset(mode='dialogs', split='train', use_binary=constant.use_binary)
dev_dataset = TraceDataset(mode='dialogs', split='dev', use_binary=constant.use_binary)
test_dataset = TraceDataset(mode='dialogs', split='test', use_binary=constant.use_binary)
else:
train_dataset = TraceDatasetRNN(split='train', use_binary=constant.use_binary)
dev_dataset = TraceDatasetRNN(split='dev', use_binary=constant.use_binary)
test_dataset = TraceDatasetRNN(split='test', use_binary=constant.use_binary)
train_dataloader = make_data_loader(train_dataset, constant.USE_CUDA, constant.B, shuffle=constant.shuffle, use_trace=True)
dev_dataloader = make_data_loader(dev_dataset, constant.USE_CUDA, constant.B, shuffle=constant.shuffle, use_trace=True)
test_dataloader = make_data_loader(test_dataset, constant.USE_CUDA, constant.B, shuffle=constant.shuffle, use_trace=True)
dataloaders = (train_dataloader, dev_dataloader, test_dataloader)
# 2. define model
if constant.use_bert:
encoder = BertModel.from_pretrained('bert-base-cased')
model = BinaryClassifier(encoder=encoder, enc_type='bert', H=constant.H)
else:
C = constant.C
H = constant.H
D = constant.D
V = len(train_dataset.lang)
embedding = nn.Embedding(V, D)
if constant.embedding == 'fasttext':
embedding.weight = nn.Parameter(torch.from_numpy(train_dataset.fasttext).float())
embedding.weight.requires_grad = constant.update_embeddings
encoder = RNNEncoder(V=V, D=D, H=H, L=1, embedding=embedding)
if constant.bi == 'bi':
H = H * 2
model = BinaryClassifier(encoder=encoder, enc_type='rnn', H=H)
# 3. load fine-tuned BERT model on SST + ED
if constant.test_path != "":
model = load_model(model, constant.test_path)
if constant.reset_linear:
model.out = nn.Linear(model.H, 1)
# 4. train reward model (linear regression) to predict sentiment score of next utterance
if constant.use_bert:
train_trace(model, dataloaders)
else:
train_sentiment(model, dataloaders)