-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
174 lines (149 loc) · 21.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import math
import random
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
from utils import constant, masked_cross_entropy
from utils.bleu import moses_multi_bleu
from utils.utils import get_metrics, load_ckpt, load_model
from train_rl import train_rl, eval_rl
from train_emotion import train_emotion, eval_emotion
from train_seq2seq import train_seq2seq, eval_seq2seq
from train_multitask import train_multitask, eval_multitask
def test(model, dataloaders, test_path=''):
# load and report best model on test
_, dev_dataloader, test_dataloader = dataloaders
if test_path != '':
model = load_model(model, test_path)
if(constant.USE_CUDA): model.cuda()
if constant.task == 'emotion':
pass
elif constant.task == 'seq2seq':
dev_loss, dev_ppl, dev_bleu, dev_bleus, dev_avg_bleu, dev_ref_lens, dev_gen_lens, dev_ref_ngrams, dev_gen_ngrams, dev_sentiment_correlation, dev_sentiment_accuracy, dev_ref_improvement, dev_gen_improvement, dev_bow_sims = eval_seq2seq(model, dev_dataloader, bleu=True, beam=constant.beam, test=True)
test_loss, test_ppl, test_bleu, test_bleus, test_avg_bleu, test_ref_lens, test_gen_lens, test_ref_ngrams, test_gen_ngrams, test_sentiment_correlation, test_sentiment_accuracy, test_ref_improvement, test_gen_improvement, test_bow_sims = eval_seq2seq(model, test_dataloader, bleu=True, beam=constant.beam, test=True, save=True)
print("BEST DEV LOSS: {:.4f}, DEV PPL: {:.1f}, DEV BLEU: {:.4f}, AVG BLEU: {:.4f}".format(dev_loss, dev_ppl, dev_bleu, dev_avg_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(dev_bleus[0], dev_bleus[1], dev_bleus[2], dev_bleus[3]))
print("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(dev_ref_ngrams[0], dev_ref_ngrams[1], dev_ref_ngrams[2]))
print("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(dev_gen_ngrams[0], dev_gen_ngrams[1], dev_gen_ngrams[2]))
print("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(dev_bow_sims[0], dev_bow_sims[1], dev_bow_sims[2]))
print("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(dev_ref_lens, dev_gen_lens, dev_sentiment_accuracy, dev_sentiment_correlation, dev_ref_improvement, dev_gen_improvement))
print("BEST TEST LOSS: {:.4f}, TEST PPL: {:.1f}, TEST BLEU: {:.4f}, AVG BLEU: {:.4f}".format(test_loss, test_ppl, test_bleu, test_avg_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
print("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(test_ref_ngrams[0], test_ref_ngrams[1], test_ref_ngrams[2]))
print("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(test_gen_ngrams[0], test_gen_ngrams[1], test_gen_ngrams[2]))
print("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(test_bow_sims[0], test_bow_sims[1], test_bow_sims[2]))
print("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(test_ref_lens, test_gen_lens, test_sentiment_accuracy, test_sentiment_correlation, test_ref_improvement, test_gen_improvement))
with open("samples/{}_summary.txt".format(constant.test_path.split('/')[1]), "w") as f:
f.write("BEST TEST LOSS: {:.4f}, TEST PPL: {:.1f}, TEST BLEU: {:.4f}, AVG BLEU: {:.4f}".format(test_loss, test_ppl, test_bleu, test_avg_bleu))
f.write("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
f.write("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(test_ref_ngrams[0], test_ref_ngrams[1], test_ref_ngrams[2]))
f.write("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(test_gen_ngrams[0], test_gen_ngrams[1], test_gen_ngrams[2]))
f.write("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(test_bow_sims[0], test_bow_sims[1], test_bow_sims[2]))
f.write("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(test_ref_lens, test_gen_lens, test_sentiment_accuracy, test_sentiment_correlation, test_ref_improvement, test_gen_improvement))
elif constant.task == 'rlseq':
if constant.use_sentiment and not constant.use_sentiment_agreement:
if constant.aux_reward_model != '':
dev_rewards, dev_f1, dev_bleu, dev_bleus = eval_rl(model, dev_dataloader, bleu=True)
test_rewards, test_f1, test_bleu, test_bleus = eval_rl(model, test_dataloader, bleu=True, save=True)
print("DEV R: {:.3f} R_l: {:.3f} R_s: {:.3f} DEV F1: {:.3f} DEV B: {:.3f}".format(dev_rewards[0], dev_rewards[1], dev_rewards[2], dev_f1, dev_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(dev_bleus[0], dev_bleus[1], dev_bleus[2], dev_bleus[3]))
print("TEST R: {:.3f} R_l: {:.3f} R_s: {:.3f} TEST F1: {:.3f} TEST B: {:.3f}".format(test_rewards[0], test_rewards[1], test_rewards[2], test_f1, test_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
else:
dev_reward, dev_f1, dev_bleu, dev_bleus, dev_avg_bleu, dev_ref_lens, dev_gen_lens, dev_ref_ngrams, dev_gen_ngrams, dev_sentiment_correlation, dev_sentiment_accuracy, dev_ref_improvement, dev_gen_improvement, dev_bow_sims = eval_rl(model, dev_dataloader, bleu=True, test=True)
test_reward, test_f1, test_bleu, test_bleus, test_avg_bleu, test_ref_lens, test_gen_lens, test_ref_ngrams, test_gen_ngrams, test_sentiment_correlation, test_sentiment_accuracy, test_ref_improvement, test_gen_improvement, test_bow_sims = eval_rl(model, test_dataloader, bleu=True, test=True, save=True)
print("BEST DEV REWARD: {:.4f}, DEV F1: {:.4f}, DEV BLEU: {:.4f}, AVG BLEU: {:.4f}".format(dev_reward, dev_f1, dev_bleu, dev_avg_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(dev_bleus[0], dev_bleus[1], dev_bleus[2], dev_bleus[3]))
print("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(dev_ref_ngrams[0], dev_ref_ngrams[1], dev_ref_ngrams[2]))
print("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(dev_gen_ngrams[0], dev_gen_ngrams[1], dev_gen_ngrams[2]))
print("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(dev_bow_sims[0], dev_bow_sims[1], dev_bow_sims[2]))
print("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(dev_ref_lens, dev_gen_lens, dev_sentiment_accuracy, dev_sentiment_correlation, dev_ref_improvement, dev_gen_improvement))
print("BEST TEST REWARD: {:.4f}, TEST F1: {:.4f}, TEST BLEU: {:.4f}, AVG BLEU: {:.4f}".format(test_reward, test_f1, test_bleu, test_avg_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
print("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(test_ref_ngrams[0], test_ref_ngrams[1], test_ref_ngrams[2]))
print("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(test_gen_ngrams[0], test_gen_ngrams[1], test_gen_ngrams[2]))
print("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(test_bow_sims[0], test_bow_sims[1], test_bow_sims[2]))
print("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(test_ref_lens, test_gen_lens, test_sentiment_accuracy, test_sentiment_correlation, test_ref_improvement, test_gen_improvement))
with open("samples/{}_summary.txt".format(constant.test_path.split('/')[1]), "w") as f:
f.write("BEST TEST REWARD: {:.4f}, TEST F1: {:.4f}, TEST BLEU: {:.4f}, AVG BLEU: {:.4f}".format(test_reward, test_f1, test_bleu, test_avg_bleu))
f.write("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
f.write("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(test_ref_ngrams[0], test_ref_ngrams[1], test_ref_ngrams[2]))
f.write("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(test_gen_ngrams[0], test_gen_ngrams[1], test_gen_ngrams[2]))
f.write("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(test_bow_sims[0], test_bow_sims[1], test_bow_sims[2]))
f.write("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(test_ref_lens, test_gen_lens, test_sentiment_accuracy, test_sentiment_correlation, test_ref_improvement, test_gen_improvement))
elif constant.use_sentiment and constant.use_sentiment_agreement:
dev_reward, dev_f1, dev_bleu, dev_bleus, dev_avg_bleu, dev_ref_lens, dev_gen_lens, dev_ref_ngrams, dev_gen_ngrams, dev_sentiment_correlation, dev_sentiment_accuracy, dev_ref_improvement, dev_gen_improvement, dev_bow_sims = eval_rl(model, dev_dataloader, bleu=True, test=True)
test_reward, test_f1, test_bleu, test_bleus, test_avg_bleu, test_ref_lens, test_gen_lens, test_ref_ngrams, test_gen_ngrams, test_sentiment_correlation, test_sentiment_accuracy, test_ref_improvement, test_gen_improvement, test_bow_sims = eval_rl(model, test_dataloader, bleu=True, test=True, save=True)
print("BEST DEV REWARD: {:.4f}, DEV F1: {:.4f}, DEV BLEU: {:.4f}, AVG BLEU: {:.4f}".format(dev_reward, dev_f1, dev_bleu, dev_avg_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(dev_bleus[0], dev_bleus[1], dev_bleus[2], dev_bleus[3]))
print("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(dev_ref_ngrams[0], dev_ref_ngrams[1], dev_ref_ngrams[2]))
print("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(dev_gen_ngrams[0], dev_gen_ngrams[1], dev_gen_ngrams[2]))
print("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(dev_bow_sims[0], dev_bow_sims[1], dev_bow_sims[2]))
print("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(dev_ref_lens, dev_gen_lens, dev_sentiment_accuracy, dev_sentiment_correlation, dev_ref_improvement, dev_gen_improvement))
print("BEST TEST REWARD: {:.4f}, TEST F1: {:.4f}, TEST BLEU: {:.4f}, AVG BLEU: {:.4f}".format(test_reward, test_f1, test_bleu, test_avg_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
print("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(test_ref_ngrams[0], test_ref_ngrams[1], test_ref_ngrams[2]))
print("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(test_gen_ngrams[0], test_gen_ngrams[1], test_gen_ngrams[2]))
print("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(test_bow_sims[0], test_bow_sims[1], test_bow_sims[2]))
print("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(test_ref_lens, test_gen_lens, test_sentiment_accuracy, test_sentiment_correlation, test_ref_improvement, test_gen_improvement))
with open("samples/{}_summary.txt".format(constant.test_path.split('/')[1]), "w") as f:
f.write("BEST TEST REWARD: {:.4f}, TEST F1: {:.4f}, TEST BLEU: {:.4f}, AVG BLEU: {:.4f}".format(test_reward, test_f1, test_bleu, test_avg_bleu))
f.write("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
f.write("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(test_ref_ngrams[0], test_ref_ngrams[1], test_ref_ngrams[2]))
f.write("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(test_gen_ngrams[0], test_gen_ngrams[1], test_gen_ngrams[2]))
f.write("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(test_bow_sims[0], test_bow_sims[1], test_bow_sims[2]))
f.write("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(test_ref_lens, test_gen_lens, test_sentiment_accuracy, test_sentiment_correlation, test_ref_improvement, test_gen_improvement))
elif constant.use_curiosity:
# np.mean(ref_lens), np.mean(gen_lens), len(distinct_ngrams['ref']) / total_ngrams['ref'], len(distinct_ngrams['gen']) / total_ngrams['gen'], sum(sentiment_agreement) / len(sentiment_agreement)
dev_reward, dev_Ri, dev_Li, dev_bleu, dev_bleus = eval_rl(model, dev_dataloader, bleu=True)
test_reward, test_Ri, test_Li, test_bleu, test_bleus = eval_rl(model, test_dataloader, bleu=True, save=True)
print("BEST DEV REWARD: {:.4f} R_i: {:.3f} L_i: {:.3f} BLEU: {:.4f}".format(dev_reward, dev_Ri, dev_Li, dev_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(dev_bleus[0], dev_bleus[1], dev_bleus[2], dev_bleus[3]))
print("BEST TEST REWARD: {:.4f} R_i: {:.3f} L_i: {:.3f} BLEU: {:.4f}".format(test_reward, test_Ri, test_Li, test_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
else:
dev_reward, dev_bleu, dev_bleus, dev_avg_bleu, dev_ref_lens, dev_gen_lens, dev_ref_ngrams, dev_gen_ngrams, dev_sentiment_correlation, dev_sentiment_accuracy, dev_ref_improvement, dev_gen_improvement, dev_bow_sims = eval_rl(model, dev_dataloader, bleu=True, test=True)
test_reward, test_bleu, test_bleus, test_avg_bleu, test_ref_lens, test_gen_lens, test_ref_ngrams, test_gen_ngrams, test_sentiment_correlation, test_sentiment_accuracy, test_ref_improvement, test_gen_improvement, test_bow_sims = eval_rl(model, test_dataloader, bleu=True, test=True, save=True)
print("BEST DEV REWARD: {:.4f}, DEV BLEU: {:.4f}, AVG BLEU: {:.4f}".format(dev_reward, dev_bleu, dev_avg_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(dev_bleus[0], dev_bleus[1], dev_bleus[2], dev_bleus[3]))
print("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(dev_ref_ngrams[0], dev_ref_ngrams[1], dev_ref_ngrams[2]))
print("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(dev_gen_ngrams[0], dev_gen_ngrams[1], dev_gen_ngrams[2]))
print("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(dev_bow_sims[0], dev_bow_sims[1], dev_bow_sims[2]))
print("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(dev_ref_lens, dev_gen_lens, dev_sentiment_accuracy, dev_sentiment_correlation, dev_ref_improvement, dev_gen_improvement))
print("BEST TEST REWARD: {:.4f}, TEST BLEU: {:.4f}, AVG BLEU: {:.4f}".format(test_reward, test_bleu, test_avg_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
print("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(test_ref_ngrams[0], test_ref_ngrams[1], test_ref_ngrams[2]))
print("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(test_gen_ngrams[0], test_gen_ngrams[1], test_gen_ngrams[2]))
print("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(test_bow_sims[0], test_bow_sims[1], test_bow_sims[2]))
print("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(test_ref_lens, test_gen_lens, test_sentiment_accuracy, test_sentiment_correlation, test_ref_improvement, test_gen_improvement))
with open("samples/{}_summary.txt".format(constant.test_path.split('/')[1]), "w") as f:
f.write("BEST TEST REWARD: {:.4f}, TEST BLEU: {:.4f}, AVG BLEU: {:.4f}".format(test_reward, test_bleu, test_avg_bleu))
f.write("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
f.write("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(test_ref_ngrams[0], test_ref_ngrams[1], test_ref_ngrams[2]))
f.write("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(test_gen_ngrams[0], test_gen_ngrams[1], test_gen_ngrams[2]))
f.write("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(test_bow_sims[0], test_bow_sims[1], test_bow_sims[2]))
f.write("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(test_ref_lens, test_gen_lens, test_sentiment_accuracy, test_sentiment_correlation, test_ref_improvement, test_gen_improvement))
elif constant.task == 'multiseq':
(dev_loss, dev_ppl, dev_bleu, dev_bleus, dev_avg_bleu, dev_ref_lens, dev_gen_lens, dev_ref_ngrams, dev_gen_ngrams, dev_sentiment_correlation, dev_sentiment_accuracy, dev_ref_improvement, dev_gen_improvement, dev_bow_sims), (dev_f1) = eval_multitask(model, dev_dataloader, bleu=True, beam=constant.beam, test=True)
(test_loss, test_ppl, test_bleu, test_bleus, test_avg_bleu, test_ref_lens, test_gen_lens, test_ref_ngrams, test_gen_ngrams, test_sentiment_correlation, test_sentiment_accuracy, test_ref_improvement, test_gen_improvement, test_bow_sims), (test_f1) = eval_multitask(model, test_dataloader, bleu=True, beam=constant.beam, test=True, save=True)
print("BEST DEV LOSS: {:.4f}, DEV PPL: {:.1f}, DEV F1: {:.4f}, DEV BLEU: {:.4f}, AVG BLEU: {:.4f}".format(dev_loss, dev_ppl, dev_f1, dev_bleu, dev_avg_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(dev_bleus[0], dev_bleus[1], dev_bleus[2], dev_bleus[3]))
print("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(dev_ref_ngrams[0], dev_ref_ngrams[1], dev_ref_ngrams[2]))
print("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(dev_gen_ngrams[0], dev_gen_ngrams[1], dev_gen_ngrams[2]))
print("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(dev_bow_sims[0], dev_bow_sims[1], dev_bow_sims[2]))
print("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(dev_ref_lens, dev_gen_lens, dev_sentiment_accuracy, dev_sentiment_correlation, dev_ref_improvement, dev_gen_improvement))
print("BEST TEST LOSS: {:.4f}, TEST PPL: {:.1f}, TEST F1: {:.4f}, TEST BLEU: {:.4f}, AVG BLEU: {:.4f}".format(test_loss, test_ppl, test_f1, test_bleu, test_avg_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
print("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(test_ref_ngrams[0], test_ref_ngrams[1], test_ref_ngrams[2]))
print("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(test_gen_ngrams[0], test_gen_ngrams[1], test_gen_ngrams[2]))
print("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(test_bow_sims[0], test_bow_sims[1], test_bow_sims[2]))
print("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(test_ref_lens, test_gen_lens, test_sentiment_accuracy, test_sentiment_correlation, test_ref_improvement, test_gen_improvement))
with open("samples/{}_summary.txt".format(constant.test_path.split('/')[1]), "w") as f:
f.write("BEST TEST LOSS: {:.4f}, TEST PPL: {:.1f}, TEST F1: {:.4f}, TEST BLEU: {:.4f}, AVG BLEU: {:.4f}".format(test_loss, test_ppl, test_f1, test_bleu, test_avg_bleu))
f.write("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
f.write("REF 1-GRAMS: {:.4f}, REF 2-GRAMS: {:.4f}, REF 3-GRAMS: {:.4f}".format(test_ref_ngrams[0], test_ref_ngrams[1], test_ref_ngrams[2]))
f.write("GEN 1-GRAMS: {:.4f}, GEN 2-GRAMS: {:.4f}, GEN 3-GRAMS: {:.4f}".format(test_gen_ngrams[0], test_gen_ngrams[1], test_gen_ngrams[2]))
f.write("BoW SIMs EXTREMA: {:.4f}, AVERAGE: {:.4f}, GREEDY: {:.4f}".format(test_bow_sims[0], test_bow_sims[1], test_bow_sims[2]))
f.write("REF LEN: {:.4f}, GEN LEN: {:.4f}, SENT ACC: {:.4f}, SENT CORR: {:.4f}, REF IMP: {:.4f}, GEN IMP: {:.4f}".format(test_ref_lens, test_gen_lens, test_sentiment_accuracy, test_sentiment_correlation, test_ref_improvement, test_gen_improvement))