-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_rl.py
538 lines (482 loc) · 29.5 KB
/
train_rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import os
import math
import random
import operator
import traceback
from functools import reduce
import numpy as np
from tqdm import tqdm
from sklearn.metrics import f1_score
from nltk.util import everygrams
from scipy.stats import pearsonr
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_pretrained_bert.modeling import BertModel
from pytorch_pretrained_bert.tokenization import BertTokenizer
from utils import constant, tile, text_input2bert_input, EmbeddingSim
from utils.bleu import moses_multi_bleu
from utils.utils import get_metrics, save_ckpt, load_ckpt, save_model, load_model, distinct_ngrams, get_sentiment, get_user_response
from models import BinaryClassifier, RNNDecoder, RNNEncoder, Seq2Seq
def train_rl(model, dataloaders):
train_dataloader, dev_dataloader, test_dataloader = dataloaders
clf_criterion = nn.BCEWithLogitsLoss()
mle_criterion = nn.CrossEntropyLoss(ignore_index=constant.pad_idx)
baseline_criterion = nn.MSELoss()
if constant.optim == 'Adam':
opt = torch.optim.Adam(model.parameters(), lr=constant.lr)
elif constant.optim == 'SGD':
opt = torch.optim.SGD(model.parameters(), lr=constant.lr)
else:
print("Optim is not defined")
exit(1)
start_epoch = 1
if constant.restore:
model, opt, start_epoch = load_ckpt(model, opt, constant.restore_path)
if constant.USE_CUDA:
model.cuda()
best_dev = 0
best_path = ''
patience = 3
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
opt, 'max', factor=0.5, patience=0, min_lr=1e-6)
tau = constant.tau
tau_min = 0.2
tau_dec = 0.2
pretrain_curiosity = constant.lambda_aux
if constant.pretrain_curiosity:
pretrain_curiosity = 0.0
try:
for e in range(start_epoch, constant.epochs):
model.train()
reward_log = []
ori_reward_log = []
aux_reward_log = [] # for sentiment agreement / curiosity
inv_loss_log = [] # for curiosity
f1_log = []
# pretrain curiosity only for first epoch
if e > start_epoch:
pretrain_curiosity = constant.lambda_aux
# temperature annealing
if constant.use_tau_anneal and e > start_epoch and constant.tau > tau_min:
constant.tau -= tau_dec
if constant.grid_search:
pbar = enumerate(train_dataloader)
else:
pbar = tqdm(enumerate(train_dataloader),total=len(train_dataloader))
for b, (dialogs, lens, targets, _, _, sentiments, sentiments_b, _, _) in pbar:
if len(train_dataloader) % (b+1) == 10:
torch.cuda.empty_cache()
opt.zero_grad()
try:
B, T = targets.shape
if constant.use_self_critical:
step_loss, dec_lens_var, R_g, R, greedy_sents, sampled_sents = model(dialogs, lens, targets)
# (R_s - R_g) * step_loss
rl_loss = torch.mean(torch.sum((R.detach() - R_g.detach()) * step_loss, dim=1) / dec_lens_var.float())
elif constant.use_arl:
step_loss, dec_lens_var, rs, R, arl, sampled_sents = model(dialogs, lens, targets)
rs = rs.transpose(0, 1).contiguous()
rl_loss = (R.detach() - rs.detach()) * step_loss
rl_loss = torch.mean(torch.sum(rl_loss * arl, dim=1) / dec_lens_var.float())
else:
# probs: (B, T, V), xs: (B, T), R: (B, 1), rs: (B, T)
if constant.use_sentiment and constant.aux_reward_model != '':
step_loss, dec_lens_var, rs, R_l, R_s, sampled_sents, clf_logits = model(dialogs, lens, targets, sentiments=sentiments)
R = constant.lambda_aux * R_l + R_s
clf_loss = clf_criterion(clf_logits, sentiments_b)
preds = torch.sigmoid(clf_logits.squeeze()) > 0.5
f1 = f1_score(sentiments_b.cpu().numpy(), preds.detach().cpu().numpy(), average='weighted')
f1_log.append(f1)
elif constant.use_sentiment and constant.use_sentiment_agreement:
step_loss, dec_lens_var, rs, R, sampled_sents, clf_logits = model(dialogs, lens, targets, sentiments=sentiments)
clf_loss = clf_criterion(clf_logits, sentiments_b)
preds = torch.sigmoid(clf_logits.squeeze()) > 0.5
f1 = f1_score(sentiments_b.cpu().numpy(), preds.detach().cpu().numpy(), average='weighted')
f1_log.append(f1)
elif constant.use_sentiment_agreement:
step_loss, dec_lens_var, rs, R, sampled_sents = model(dialogs, lens, targets, sentiments=sentiments)
elif constant.use_sentiment:
step_loss, dec_lens_var, rs, R, sampled_sents, clf_logits = model(dialogs, lens, targets, sentiments=sentiments)
clf_loss = clf_criterion(clf_logits, sentiments_b)
preds = torch.sigmoid(clf_logits.squeeze()) > 0.5
f1 = f1_score(sentiments_b.cpu().numpy(), preds.detach().cpu().numpy(), average='weighted')
f1_log.append(f1)
elif constant.use_curiosity:
step_loss, dec_lens_var, rs, R, R_i, L_i, sampled_sents = model(dialogs, lens, targets)
rs = rs.transpose(0, 1).contiguous()
R_i = R_i.transpose(0, 1).contiguous()
baseline_target = R.detach() * R_i.detach()
rl_loss = torch.mean(torch.sum((R.detach() * R_i.detach() - rs.detach()) * step_loss, dim=1) / dec_lens_var.float())
R_i = torch.mean(torch.sum(R_i, dim=1) / dec_lens_var.float())
else:
step_loss, dec_lens_var, rs, R, sampled_sents = model(dialogs, lens, targets)
if not constant.use_curiosity:
# probs = probs.transpose(0, 1).cntiguous()
# xs = xs.transpose(0, 1).contiguous()
# # (B, T, V) => (B, T) => (B,)
# probs = torch.gather(probs, dim=2, index=xs.unsqueeze(2)).squeeze()
# probs = -torch.log(probs)
rs = rs.transpose(0, 1).contiguous()
rl_loss = torch.mean(torch.sum((R.detach() - rs.detach()) * step_loss, dim=1) / dec_lens_var.float())
if constant.use_hybrid:
probs, _ = model(dialogs, lens, targets, use_mle=True)
mle_loss = mle_criterion(probs.transpose(0, 1).contiguous().view(B*T, -1), targets.contiguous().view(B*T))
loss = constant.lambda_mle * rl_loss + (1 - constant.lambda_mle) * mle_loss
elif constant.use_arl:
probs, _ = model(dialogs, lens, targets, use_mle=True)
arl_c = torch.ones(arl.size()).to(arl.device) - arl
mle_criterion.reduction = 'none'
mle_loss = mle_criterion(probs.transpose(0, 1).contiguous().view(B*T, -1), targets.contiguous().view(B*T))
mle_loss = torch.mean(torch.sum(mle_loss * arl_c, dim=1))
loss = rl_loss + mle_loss
else:
loss = rl_loss
if constant.use_sentiment:
loss = constant.lambda_emo * clf_loss + (1 - constant.lambda_emo) * loss
if constant.use_curiosity:
loss = pretrain_curiosity * loss + (1 - constant.beta) * L_i + constant.beta * R_i
loss.backward()
opt.step()
if constant.use_baseline:
if constant.use_curiosity:
baseline_loss = baseline_criterion(rs, baseline_target)
else:
# rs (32, T) <==> R (32, 1)
baseline_loss = baseline_criterion(rs, tile(R, T, dim=1))
baseline_loss.backward()
opt.step()
## logging
reward_log.append(torch.mean(R).item())
if constant.use_sentiment and constant.aux_reward_model != '':
ori_reward_log.append(torch.mean(R_l).item())
aux_reward_log.append(torch.mean(R_s).item())
if constant.use_curiosity:
aux_reward_log.append(torch.mean(R_i).item())
inv_loss_log.append(L_i.item())
if not constant.grid_search:
if constant.use_sentiment:
if constant.aux_reward_model != '':
pbar.set_description("(Epoch {}) TRAIN R: {:.3f} R_l: {:.3f} R_s: {:.3f} F1: {:.3f}".format(e, np.mean(reward_log), np.mean(ori_reward_log), np.mean(aux_reward_log), np.mean(f1_log)))
else:
pbar.set_description("(Epoch {}) TRAIN REWARD: {:.4f} TRAIN F1: {:.4f}".format(e, np.mean(reward_log), np.mean(f1_log)))
elif constant.use_curiosity:
pbar.set_description("(Epoch {}) TRAIN R: {:.3f} R_i: {:.3f} L_i: {:.3f}".format(e, np.mean(reward_log), np.mean(aux_reward_log), np.mean(inv_loss_log)))
else:
pbar.set_description("(Epoch {}) TRAIN REWARD: {:.4f}".format(e, np.mean(reward_log)))
if b % 100 == 0 and b > 0:
# if not constant.use_self_critical:
# _, greedy_sents = model(dialogs, lens, targets, test=True, use_mle=True)
corrects = [" ".join([train_dataloader.dataset.lang.index2word[x_t] for x_t in iter(lambda x=iter(gens): next(x), constant.eou_idx)]) for gens in targets.cpu().data.numpy()]
contexts = [" ".join([train_dataloader.dataset.lang.index2word[x_t] for x_t in iter(lambda x=iter(gens): next(x), constant.pad_idx)]) for gens in dialogs.cpu().data.numpy()]
for d, c, s, r in zip(contexts, corrects, sampled_sents, R.detach().cpu().numpy()):
print('reward: ', r)
print('dialog: ', d)
print('sample: ', s)
print('golden: ', c)
print()
except RuntimeError as err:
if 'out of memory' in str(err):
print('| WARNING: ran out of memory, skipping batch')
torch.cuda.empty_cache()
else:
print(err)
traceback.print_exc()
raise err
## LOG
if constant.use_sentiment and not constant.use_sentiment_agreement:
dev_reward, dev_f1 = eval_rl(model, dev_dataloader, bleu=False)
print("(Epoch {}) DEV REWARD: {:.4f}".format(e, dev_reward))
elif constant.use_curiosity:
dev_reward, dev_Ri, dev_Li = eval_rl(model, dev_dataloader, bleu=False)
print("(Epoch {}) DEV REWARD: {:.3f} R_i: {:.3f} L_i: {:.3f}".format(e, dev_reward, dev_Ri, dev_Li))
else:
dev_reward = eval_rl(model, dev_dataloader, bleu=False)
print("(Epoch {}) DEV REWARD: {:.4f}".format(e, dev_reward))
scheduler.step(dev_reward)
if(dev_reward > best_dev):
best_dev = dev_reward
# save best model
path = 'trained/data-{}.task-rlseq.lr-{}.tau-{}.lambda-{}.reward-{}.{}'
path = path.format(constant.data, constant.lr, tau, constant.lambda_mle, best_dev, constant.reward_model.split('/')[1])
if constant.use_curiosity:
path += '.curiosity'
if constant.aux_reward_model != '':
path += '.' + constant.aux_reward_model.split('/')[1]
path += '.lambda_aux-{}'.format(constant.lambda_aux)
if constant.use_tau_anneal:
path += '.tau_anneal'
if constant.use_self_critical:
path += '.self_critical'
if constant.use_current:
path += '.current'
if constant.use_sentiment:
path += '.sentiment'
if constant.use_sentiment_agreement:
path += '.agreement'
if constant.use_context:
path += '.context'
if constant.topk:
path += '.topk-{}'.format(constant.topk_size)
if constant.use_arl:
path += '.arl'
if constant.grid_search:
path += '.grid'
best_path = save_model(model, 'reward', best_dev, path)
patience = 3
else:
patience -= 1
if patience == 0: break
if constant.aux_reward_model == '' and best_dev == 0.0: break
except KeyboardInterrupt:
if not constant.grid_search:
print("KEYBOARD INTERRUPT: Save CKPT and Eval")
save = True if input('Save ckpt? (y/n)\t') in ['y', 'Y', 'yes', 'Yes'] else False
if save:
save_path = save_ckpt(model, opt, e)
print("Saved CKPT path: ", save_path)
# ask if eval
do_eval = True if input('Proceed with eval? (y/n)\t') in ['y', 'Y', 'yes', 'Yes'] else False
if do_eval:
if constant.use_sentiment:
if constant.aux_reward_model != '':
dev_rewards, dev_f1, dev_bleu, dev_bleus = eval_rl(model, dev_dataloader, bleu=True)
print("DEV R: {:.3f} R_l: {:.3f} R_s: {:.3f} DEV F1: {:.3f} DEV B: {:.3f}".format(dev_rewards[0], dev_rewards[1], dev_rewards[2], dev_f1, dev_bleu))
else:
dev_reward, dev_f1, dev_bleu, dev_bleus = eval_rl(model, dev_dataloader, bleu=True)
print("DEV REWARD: {:.4f}, DEV F1: {:.4f}, DEV BLEU: {:.4f}".format(dev_reward, dev_f1, dev_bleu))
elif constant.use_curiosity:
dev_reward, dev_Ri, dev_Li, dev_bleu, dev_bleus = eval_rl(model, dev_dataloader, bleu=True)
print("BEST DEV REWARD: {:.4f} R_i: {:.3f} L_i: {:.3f} BLEU: {:.4f}".format(dev_reward, dev_Ri, dev_Li, dev_bleu))
else:
dev_reward, dev_bleu, dev_bleus = eval_rl(model, dev_dataloader, bleu=True)
print("DEV REWARD: {:.4f}, DEV BLEU: {:.4f}".format(dev_reward, dev_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(dev_bleus[0], dev_bleus[1], dev_bleus[2], dev_bleus[3]))
exit(1)
# load and report best model on test
torch.cuda.empty_cache()
model = load_model(model, best_path)
if constant.USE_CUDA:
model.cuda()
if constant.use_sentiment and not constant.use_sentiment_agreement:
if constant.aux_reward_model != '':
dev_rewards, dev_f1, dev_bleu, dev_bleus = eval_rl(model, dev_dataloader, bleu=True)
test_rewards, test_f1, test_bleu, test_bleus = eval_rl(model, test_dataloader, bleu=True)
print("DEV R: {:.3f} R_l: {:.3f} R_s: {:.3f} DEV F1: {:.3f} DEV B: {:.3f}".format(dev_rewards[0], dev_rewards[1], dev_rewards[2], dev_f1, dev_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(dev_bleus[0], dev_bleus[1], dev_bleus[2], dev_bleus[3]))
print("TEST R: {:.3f} R_l: {:.3f} R_s: {:.3f} TEST F1: {:.3f} TEST B: {:.3f}".format(test_rewards[0], test_rewards[1], test_rewards[2], test_f1, test_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
else:
dev_reward, dev_f1, dev_bleu, dev_bleus = eval_rl(model, dev_dataloader, bleu=True)
test_reward, test_f1, test_bleu, test_bleus = eval_rl(model, test_dataloader, bleu=True)
print("DEV REWARD: {:.4f}, DEV F1: {:.4f}, DEV BLEU: {:.4f}".format(dev_reward, dev_f1, dev_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(dev_bleus[0], dev_bleus[1], dev_bleus[2], dev_bleus[3]))
print("TEST REWARD: {:.4f}, TEST F1: {:.4f}, TEST BLEU: {:.4f}".format(test_reward, test_f1, test_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
elif constant.use_curiosity:
dev_reward, dev_Ri, dev_Li, dev_bleu, dev_bleus = eval_rl(model, dev_dataloader, bleu=True)
test_reward, test_Ri, test_Li, test_bleu, test_bleus = eval_rl(model, test_dataloader, bleu=True)
print("BEST DEV REWARD: {:.4f} R_i: {:.3f} L_i: {:.3f} BLEU: {:.4f}".format(dev_reward, dev_Ri, dev_Li, dev_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(dev_bleus[0], dev_bleus[1], dev_bleus[2], dev_bleus[3]))
print("BEST TEST REWARD: {:.4f} R_i: {:.3f} L_i: {:.3f} BLEU: {:.4f}".format(test_reward, test_Ri, test_Li, test_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
else:
dev_reward, dev_bleu, dev_bleus = eval_rl(model, dev_dataloader, bleu=True)
test_reward, test_bleu, test_bleus = eval_rl(model, test_dataloader, bleu=True)
print("BEST DEV REWARD: {:.4f}, BLEU: {:.4f}".format(dev_reward, dev_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(dev_bleus[0], dev_bleus[1], dev_bleus[2], dev_bleus[3]))
print("BEST TEST REWARD: {:.4f}, BLEU: {:.4f}".format(test_reward, test_bleu))
print("BLEU 1: {:.4f}, BLEU 2: {:.4f}, BLEU 3: {:.4f}, BLEU 4: {:.4f}".format(test_bleus[0], test_bleus[1], test_bleus[2], test_bleus[3]))
def eval_rl(model, dataloader, bleu=False, raise_oom=False, save=False, test=False):
model.eval()
preds = []
golds = []
reward_log = []
ori_reward_log = []
aux_reward_log = []
inv_loss_log = []
vocab = dataloader.dataset.lang
ctx = []
ref = []
g_hyps = []
bow_sims = []
# mle_criterion = nn.CrossEntropyLoss(ignore_index=constant.pad_idx)
# automated metrics
if test and bleu:
tokenizer = model.reward_tokenizer
embedding_metrics = EmbeddingSim(dataloader.dataset.fasttext)
# define and load sentiment clf
if constant.reward_model == constant.sentiment_clf:
sentiment_clf = model.reward
else:
sentiment_clf = BinaryClassifier(encoder=BertModel.from_pretrained('bert-base-cased'), enc_type='bert', H=768)
sentiment_clf = load_model(sentiment_clf, constant.sentiment_clf)
if constant.use_user:
user_model = model.user_model
else:
# define and load user model
encoder = RNNEncoder(V=len(dataloader.dataset.lang), D=constant.D, H=constant.H, L=1, embedding=None)
decoder = RNNDecoder(V=len(dataloader.dataset.lang), D=constant.D, H=constant.H, L=1, embedding=None)
user_model = Seq2Seq(encoder=encoder, decoder=decoder, vocab=dataloader.dataset.lang)
user_model = load_model(user_model, constant.user_model)
user_model.eval()
if constant.USE_CUDA:
sentiment_clf.cuda()
user_model.cuda()
ref_lens = []
gen_lens = []
ref_sentiments = []
gen_sentiments = []
ref_improvement = []
gen_improvement = []
sentiment_agreement = []
with torch.no_grad():
try:
for dialogs, lens, targets, unsort, _, sentiments, sentiments_b, _, _ in dataloader:
if constant.use_sentiment:
if constant.aux_reward_model != '':
_, _, _, R_l, R_s, _, clf_logits = model(dialogs, lens, targets, sentiments=sentiments)
R = constant.lambda_aux * R_l + R_s
ori_reward_log.append(torch.mean(R_l).item())
aux_reward_log.append(torch.mean(R_s).item())
else:
_, _, _, R, _, clf_logits = model(dialogs, lens, targets, sentiments=sentiments)
pred = torch.sigmoid(clf_logits.squeeze()) > 0.5
preds.append(pred.detach().cpu().numpy())
golds.append(sentiments_b.cpu().numpy())
elif constant.use_sentiment_agreement:
_, _, _, R, _ = model(dialogs, lens, targets, sentiments=sentiments)
elif constant.use_curiosity:
_, dec_lens_var, _, R, R_i, L_i, _ = model(dialogs, lens, targets)
R_i = torch.mean(torch.sum(R_i.transpose(0, 1).contiguous(), dim=1) / dec_lens_var.float())
aux_reward_log.append(torch.mean(R_i).item())
inv_loss_log.append(L_i.item())
else:
_, _, _, R, _ = model(dialogs, lens, targets, sentiments=sentiments, test=True)
reward_log.append(torch.mean(R).item())
if bleu:
# Calculate BLEU
_, sents = model(dialogs, lens, targets, test=True, use_mle=True)
g_hyps += np.array(sents)[unsort].tolist()
# corrects: B x T
r = [" ".join([vocab.index2word[x_t] for x_t in iter(lambda x=iter(gens): next(x), constant.eou_idx)]) for gens in targets[unsort].cpu().data.numpy()]
c = [" ".join([vocab.index2word[x_t] for x_t in iter(lambda x=iter(gens): next(x), constant.pad_idx)]) for gens in dialogs[unsort].cpu().data.numpy()]
ref += r
ctx += c
if test:
# calculate sentiment agreement
ref_sentiment = get_sentiment(sentiment_clf, r, tokenizer).squeeze() > 0.5
gen_sentiment = get_sentiment(sentiment_clf, np.array(sents)[unsort].tolist(), tokenizer).squeeze() > 0.5
sentiment_agreement += (ref_sentiment == gen_sentiment).cpu().numpy().tolist()
ref_sentiments += ref_sentiment.cpu().numpy().tolist()
gen_sentiments += gen_sentiment.cpu().numpy().tolist()
# calculate sentiment improvement
refs = [context + ' ' + sent for context, sent in zip(c, r)]
gens = [context + ' ' + sent for context, sent in zip(c, np.array(sents)[unsort].tolist())]
ref_simulation = get_user_response(user_model, targets, refs, model.vocab)
gen_simulation = get_user_response(user_model, targets, gens, model.vocab)
ctx_sentiment = get_sentiment(sentiment_clf, c, tokenizer).squeeze()
user_ref_sentiments = get_sentiment(sentiment_clf, ref_simulation, tokenizer).squeeze()
user_gen_sentiments = get_sentiment(sentiment_clf, gen_simulation, tokenizer).squeeze()
ref_improvement += (user_ref_sentiments - ctx_sentiment).cpu().numpy().tolist()
gen_improvement += (user_gen_sentiments - ctx_sentiment).cpu().numpy().tolist()
# average generation lengths
ref_lens += [len(t.split()) for t in r]
gen_lens += [len(s.split()) for s in sents]
# calculate BoW embedding similarity
seqs = np.array([vocab.transform_one(sent) for sent in sents])
lens = [len(seq) for seq in seqs]
sort = np.argsort(lens)[::-1].tolist()
unsort = np.argsort(sort).tolist()
seqs = seqs[sort]
lens = np.array(lens)[sort].tolist()
padded_gens = np.ones((len(seqs), lens[0])).astype(int)
for b in range(len(seqs)):
padded_gens[b, :lens[b]] = np.array(seqs[b])
extrema, avg, greedy = embedding_metrics.sim_bow(
padded_gens,
lens,
targets.cpu().numpy()[sort],
[len(t.split()) for t in r])
bow_sims.append((extrema, avg, greedy))
except RuntimeError as e:
if 'out of memory' in str(e) and not raise_oom:
print('| WARNING: ran out of memory, retrying batch')
for p in model.parameters():
if p.grad is not None:
del p.grad # free some memory
torch.cuda.empty_cache()
return eval_rl(model, dataloader, bleu, raise_oom=True)
else:
raise e
if not constant.grid_search:
if save:
if bleu and test:
if not constant.topk:
fname = "samples/{}.greedy.txt".format(constant.test_path.split('/')[1])
else:
fname = "samples/{}.topk.{:.4f}.txt".format(constant.test_path.split('/')[1], pearsonr(ref_sentiments, gen_sentiments)[0])
else:
fname = "samples/{}.greedy.txt".format(constant.test_path.split('/')[1])
with open(fname, "w") as f:
for i, (c, r, h) in enumerate(zip(ctx, ref, g_hyps)):
f.write("DIAL {}: {}\n".format(i, c))
f.write("GOLD: {}\n".format(r))
f.write("PRED: {}\n".format(h))
f.write("\n")
else:
count = 0
for c, r, h in zip(ctx, ref, g_hyps):
if count < 100:
print("DIAL: ", c)
print("GOLD: ", r)
print("GRDY: ", h)
print()
count += 1
else:
break
if bleu:
bleu_score, bleus = moses_multi_bleu(np.array(g_hyps), np.array(ref), lowercase=True)
if test:
bow_sims = np.array(bow_sims)
if constant.use_sentiment and constant.aux_reward_model != '':
return [np.mean(reward_log), np.mean(ori_reward_log), np.mean(aux_reward_log)], bleu_score, bleus
elif constant.use_sentiment:
preds = np.hstack(np.array(preds))
golds = np.concatenate(golds)
f1 = f1_score(preds, golds, average='weighted')
return np.mean(reward_log), f1, bleu_score, bleus, np.mean(bleus), np.mean(ref_lens), np.mean(gen_lens), distinct_ngrams(ref), distinct_ngrams(g_hyps), pearsonr(ref_sentiments, gen_sentiments)[0], sum(sentiment_agreement) / len(sentiment_agreement), np.mean(ref_improvement), np.mean(gen_improvement), np.mean(bow_sims, axis=0)
elif constant.use_curiosity:
return np.mean(reward_log), np.mean(aux_reward_log), np.mean(inv_loss_log), bleu_score, bleus
else:
return np.mean(reward_log), bleu_score, bleus, np.mean(bleus), np.mean(ref_lens), np.mean(gen_lens), distinct_ngrams(ref), distinct_ngrams(g_hyps), pearsonr(ref_sentiments, gen_sentiments)[0], sum(sentiment_agreement) / len(sentiment_agreement), np.mean(ref_improvement), np.mean(gen_improvement), np.mean(bow_sims, axis=0)
elif constant.use_curiosity:
return np.mean(reward_log), np.mean(aux_reward_log), np.mean(inv_loss_log), bleu_score, bleus
elif constant.use_sentiment:
if constant.use_sentiment_agreement:
return np.mean(reward_log), bleu_score, bleus
preds = np.hstack(np.array(preds))
golds = np.concatenate(golds)
f1 = f1_score(preds, golds, average='weighted')
if constant.aux_reward_model != '':
return [np.mean(reward_log), np.mean(ori_reward_log), np.mean(aux_reward_log)], f1, bleu_score, bleus
else:
return np.mean(reward_log), f1, bleu_score, bleus
else:
return np.mean(reward_log), bleu_score, bleus
else:
if test:
if constant.use_curiosity:
return np.mean(reward_log), np.mean(aux_reward_log), np.mean(inv_loss_log)
return np.mean(reward_log)
elif constant.use_curiosity:
return np.mean(reward_log), np.mean(aux_reward_log), np.mean(inv_loss_log)
elif constant.use_sentiment:
if constant.use_sentiment_agreement:
return np.mean(reward_log)
preds = np.hstack(np.array(preds))
golds = np.concatenate(golds)
f1 = f1_score(preds, golds, average='weighted')
return np.mean(reward_log), f1
else:
return np.mean(reward_log)