-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_sentiment.py
241 lines (204 loc) · 8.84 KB
/
train_sentiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import math
import random
import numpy as np
from sklearn.metrics import f1_score
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_pretrained_bert.optimization import BertAdam
from utils import constant, masked_cross_entropy
from utils.bleu import moses_multi_bleu
from utils.utils import get_metrics, save_ckpt, load_ckpt, save_model, load_model
def train_trace(model, dataloaders):
train_dataloader, dev_dataloader, test_dataloader = dataloaders
if(constant.USE_CUDA): model.cuda()
if constant.use_binary:
criterion = nn.BCEWithLogitsLoss()
else:
criterion = nn.MSELoss()
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
opt = BertAdam(optimizer_grouped_parameters,
lr=constant.lr,
warmup=0.01,
t_total=int(len(train_dataloader) * 5))
best_dev = 10000
best_test = 10000
patience = 3
for e in range(constant.epochs):
model.train()
loss_log = []
f1_log = []
pbar = tqdm(enumerate(train_dataloader),total=len(train_dataloader))
for _, batch in pbar:
input_ids, input_masks, segment_ids, traces = batch
logits = model((input_ids, segment_ids, input_masks)).squeeze()
if len(logits.shape) == 0:
logits = logits.unsqueeze(0)
loss = criterion(logits, traces)
loss.backward()
opt.step()
opt.zero_grad()
## logging
loss_log.append(loss.item())
if constant.use_binary:
preds = F.sigmoid(logits) > 0.5
golds = traces.cpu().numpy()
else:
preds = logits > 0.5
golds = (traces > 0.5).cpu().numpy()
f1 = f1_score(golds, preds.detach().cpu().numpy(), average='weighted')
f1_log.append(f1)
pbar.set_description("(Epoch {}) TRAIN LOSS:{:.4f} TRAIN F1:{:.4f}".format(e+1, np.mean(loss_log), np.mean(f1_log)))
## LOG
dev_loss, dev_f1 = eval_trace(model, dev_dataloader)
test_loss, test_f1 = eval_trace(model, test_dataloader)
print("(Epoch {}) DEV LOSS: {:.4f} DEV F1:{:.4f} TEST LOSS: {:.4f} TEST F1:{:.4f} ".format(e+1, dev_loss, dev_f1, test_loss, test_f1))
print("(Epoch {}) BEST DEV LOSS: {:.4f} BEST TEST LOSS: {:.4f}".format(e+1, best_dev, best_test))
if(dev_loss < best_dev):
best_dev = dev_loss
best_test = test_loss
patience = 3
path = 'trained/data-{}.task-trace.loss-{}'
save_model(model, 'loss', best_dev, path.format(constant.data, best_dev))
else:
patience -= 1
if(patience == 0): break
if(best_dev == 0.0): break
print("BEST SCORES - DEV LOSS: {:.4f}, TEST LOSS: {:.4f}".format(best_dev, best_test))
def eval_trace(model, dataloader):
model.eval()
if constant.use_binary:
criterion = nn.BCEWithLogitsLoss()
else:
criterion = nn.MSELoss()
loss_log = []
f1_log = []
with torch.no_grad():
for batch in dataloader:
input_ids, input_masks, segment_ids, traces = batch
logits = model((input_ids, segment_ids, input_masks)).squeeze()
if len(logits.shape) == 0:
logits = logits.unsqueeze(0)
loss = criterion(logits, traces)
loss_log.append(loss.item())
if constant.use_binary:
preds = F.sigmoid(logits) > 0.5
golds = traces.cpu().numpy()
else:
preds = logits > 0.5
golds = (traces > 0.5).cpu().numpy()
f1 = f1_score(golds, preds.detach().cpu().numpy(), average='weighted')
f1_log.append(f1)
return np.mean(loss_log), np.mean(f1_log)
def train_sentiment(model, dataloaders):
"""
Training loop
Inputs:
model: the model to be trained
dataloader: data loader
Output:
best_dev: best f1 score on dev data
best_test: best f1 score on test data
"""
train_dataloader, dev_dataloader, test_dataloader = dataloaders
if(constant.USE_CUDA): model.cuda()
criterion = nn.BCEWithLogitsLoss()
if constant.use_bert:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
opt = BertAdam(optimizer_grouped_parameters,
lr=constant.lr,
warmup=0.01,
t_total=int(len(train_dataloader) * 5))
else:
opt = torch.optim.Adam(model.parameters(), lr=constant.lr)
best_dev = 0
best_test = 0
patience = 3
try:
for e in range(constant.epochs):
model.train()
loss_log = []
f1_log = []
pbar = tqdm(enumerate(train_dataloader),total=len(train_dataloader))
if constant.grid_search:
pbar = enumerate(train_dataloader)
else:
pbar = tqdm(enumerate(train_dataloader),total=len(train_dataloader))
for _, batch in pbar:
if constant.use_bert:
input_ids, input_masks, segment_ids, sentiments = batch
logits = model((input_ids, segment_ids, input_masks)).squeeze()
else:
sentences, lens, sentiments = batch
logits = model(sentences, lens).squeeze()
if len(logits.shape) == 0:
logits = logits.unsqueeze(0)
loss = criterion(logits, sentiments)
loss.backward()
opt.step()
opt.zero_grad()
## logging
loss_log.append(loss.item())
preds = F.sigmoid(logits) > 0.5
# preds = torch.argmax(logits, dim=1)
f1 = f1_score(sentiments.cpu().numpy(), preds.detach().cpu().numpy(), average='weighted')
f1_log.append(f1)
if not constant.grid_search:
pbar.set_description("(Epoch {}) TRAIN F1:{:.4f} TRAIN LOSS:{:.4f}".format(e+1, np.mean(f1_log), np.mean(loss_log)))
## LOG
f1 = eval_sentiment(model, dev_dataloader)
testF1 = eval_sentiment(model, test_dataloader)
print("(Epoch {}) DEV F1: {:.4f} TEST F1: {:.4f}".format(e+1, f1, testF1))
print("(Epoch {}) BEST DEV F1: {:.4f} BEST TEST F1: {:.4f}".format(e+1, best_dev, best_test))
if(f1 > best_dev):
best_dev = f1
best_test = testF1
patience = 3
path = 'trained/data-{}.task-sentiment.f1-{}'
save_model(model, 'loss', best_dev, path.format(constant.data, best_dev))
else:
patience -= 1
if(patience == 0): break
if(best_dev == 1.0): break
except KeyboardInterrupt:
if not constant.grid_search:
print("KEYBOARD INTERRUPT: Save CKPT and Eval")
save = True if input('Save ckpt? (y/n)\t') in ['y', 'Y', 'yes', 'Yes'] else False
if save:
save_path = save_ckpt(model, opt, e)
print("Saved CKPT path: ", save_path)
print("BEST SCORES - DEV F1: {:.4f}, TEST F1: {:.4f}".format(best_dev, best_test))
exit(1)
print("BEST SCORES - DEV F1: {:.4f}, TEST F1: {:.4f}".format(best_dev, best_test))
def eval_sentiment(model, dataloader):
model.eval()
preds = []
golds = []
with torch.no_grad():
for batch in dataloader:
if constant.use_bert:
input_ids, input_masks, segment_ids, sentiments = batch
logits = model((input_ids, segment_ids, input_masks)).squeeze()
else:
sentences, lens, sentiments = batch
logits = model(sentences, lens).squeeze()
pred = logits > 0.5
preds.append(pred.detach().cpu().numpy())
golds.append(sentiments.cpu().numpy())
preds = np.concatenate(preds)
golds = np.concatenate(golds)
f1 = f1_score(golds, preds, average='weighted')
# _, _, _, microF1 = get_metrics(pred, gold, verbose=False if constant.grid_search else True)
return f1