-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathctlScript.sml
501 lines (425 loc) · 20.1 KB
/
ctlScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
(* app load ["envTheory","setLemmasTheory","res_quanLib","stringLib","pred_setLib","ksTheory"] *)
open HolKernel Parse boolLib bossLib
val _ = new_theory "ctl";
open pairTheory;
open pairLib;
open pairTools;
open pairSyntax;
open PairRules;
open pred_setTheory;
open pred_setLib;
open stringLib;
open listTheory;
open simpLib;
open stringTheory;
open sumTheory;
open ksTheory;
open numLib;
open setLemmasTheory;
open res_quanLib
open envTheory
val _ = numLib.temp_prefer_num();
(* Most of this is cannibalised from MJCG's old Sugar2 theories *)
(******************************************************************************
* Boolean expressions
******************************************************************************)
val bexp_def =
Hol_datatype
`bexp = B_TRUE (* truth *)
| B_PROP of 'a (* atomic proposition *)
| B_NOT of bexp (* negation *)
| B_AND of bexp # bexp`; (* conjunction *)
(******************************************************************************
* Definition of disjunction
******************************************************************************)
val B_OR_def =
Define `B_OR(b1,b2) = B_NOT(B_AND(B_NOT b1, B_NOT b2))`;
(******************************************************************************
* Definition of falsity
******************************************************************************)
val B_FALSE_def =
Define `B_FALSE = B_NOT B_TRUE`;
(******************************************************************************
* Formulas of Sugar Optional Branching Extension (CTL)
******************************************************************************)
val ctl_def =
Hol_datatype
`ctl = C_BOOL of 'a bexp (* boolean expression *)
| C_NOT of ctl (* \neg f *)
| C_AND of ctl # ctl (* f1 \wedge f2 *)
| C_EX of ctl (* EX f *)
| C_EU of ctl # ctl (* E[f1 U f2] *)
| C_EG of ctl`; (* EG f *)
(******************************************************************************
* ``: ('prop,'state)kripke_structure``
******************************************************************************)
val kripke_structure_def =
Hol_datatype
`kripke_structure =
<| S: 'state -> bool;
S0:'state -> bool;
R: 'state # 'state -> bool;
P: 'prop -> bool;
L: 'state -> ('prop -> bool) |>`;
(******************************************************************************
* B_SEM l b means "l |= b" where l is a letter, i.e. l : 'prop -> bool
******************************************************************************)
val B_SEM_def =
Define
`(B_SEM l B_TRUE = T)
/\
(B_SEM l (B_PROP(p:'prop)) = p IN l)
/\
(B_SEM l (B_NOT b) = ~(B_SEM l b))
/\
(B_SEM l (B_AND(b1,b2)) = B_SEM l b1 /\ B_SEM l b2)`;
(******************************************************************************
* A path is finite or infinite
******************************************************************************)
val path_def =
Hol_datatype
`path = FINITE of ('s list)
| INFINITE of (num -> 's)`;
(******************************************************************************
* Tests
******************************************************************************)
val IS_FINITE_def =
Define `(IS_FINITE(FINITE p) = T)
/\
(IS_FINITE(INFINITE f) = F)`;
val IS_INFINITE_def =
Define `(IS_INFINITE(FINITE p) = F)
/\
(IS_INFINITE(INFINITE f) = T)`;
(******************************************************************************
* HEAD (p0 p1 p2 p3 ...) = p0
******************************************************************************)
val HEAD_def =
Define `(HEAD (FINITE p) = HD p)
/\
(HEAD (INFINITE f) = f 0)`;
(******************************************************************************
* REST (p0 p1 p2 p3 ...) = (p1 p2 p3 ...)
******************************************************************************)
val REST_def =
Define `(REST (FINITE p) = FINITE(TL p))
/\
(REST (INFINITE f) = INFINITE(\n. f(n+1)))`;
(******************************************************************************
* RESTN (p0 p1 p2 p3 ...) n = (pn p(n+1) p(n+2) ...)
******************************************************************************)
val RESTN_def =
Define `(RESTN p 0 = p) /\ (RESTN p (SUC n) = RESTN (REST p) n)`;
(******************************************************************************
* Simple properties
******************************************************************************)
val NOT_IS_INFINITE =
store_thm
("NOT_IS_INFINITE",
``IS_INFINITE p = ~(IS_FINITE p)``,
Cases_on `p`
THEN RW_TAC std_ss [IS_INFINITE_def,IS_FINITE_def]);
val NOT_IS_FINITE =
store_thm
("NOT_IS_FINITE",
``IS_FINITE p = ~(IS_INFINITE p)``,
Cases_on `p`
THEN RW_TAC std_ss [IS_INFINITE_def,IS_FINITE_def]);
val IS_INFINITE_REST =
store_thm
("IS_INFINITE_REST",
``!p. IS_INFINITE(REST p) = IS_INFINITE p``,
Induct
THEN RW_TAC list_ss [REST_def,IS_INFINITE_def,IS_FINITE_def]);
val IS_INFINITE_RESTN =
store_thm
("IS_INFINITE_RESTN",
``!n p. IS_INFINITE(RESTN p n) = IS_INFINITE p``,
Induct
THEN RW_TAC list_ss [RESTN_def,IS_INFINITE_REST]);
val IS_FINITE_REST =
store_thm
("IS_FINITE_REST",
``!p. IS_FINITE(REST p) = IS_FINITE p``,
Induct
THEN RW_TAC list_ss [REST_def,IS_INFINITE_def,IS_FINITE_def]);
val IS_FINITE_RESTN =
store_thm
("IS_FINITE_RESTN",
``!n p. IS_FINITE(RESTN p n) = IS_FINITE p``,
Induct
THEN RW_TAC list_ss [RESTN_def,IS_FINITE_REST]);
val FINITE_TL =
store_thm
("FINITE_TL",
``!l. 0 < LENGTH l ==> (FINITE(TL l) = REST(FINITE l))``,
Induct
THEN RW_TAC list_ss [REST_def]);
(******************************************************************************
* LENGTH(FINITE l) = LENGTH l
* LENGTH is not specified on infinite paths, but LEN (defined below) is.
******************************************************************************)
(*val LENGTH_def =
Define `LENGTH (FINITE l) = list$LENGTH l`;*)
(******************************************************************************
* ELEM (p0 p1 p2 p3 ...) n = pn
******************************************************************************)
val ELEM_def = Define `ELEM p n = HEAD(RESTN p n)`;
(******************************************************************************
* Extended numbers.
******************************************************************************)
val xnum_def =
Hol_datatype
`xnum = INFINITY (* length of an infinite path *)
| XNUM of num`; (* length of a finite path *)
(******************************************************************************
* The constant ``to`` is a left associative infix with precedence 500.
* It is overloaded so that
* (m to n) i means m <= i /\ i < n (num_to_def)
* (m to XNUM n) i means m <= i /\ i < n (xnum_to_def)
* (m to INFINITY) i means m <= i (xnum_to_def)
******************************************************************************)
val num_to_def =
Define `$num_to m n i = m <= i /\ i < n`;
val xnum_to_def =
Define
`($xnum_to m (XNUM n) i = m <= i /\ i < n)
/\
($xnum_to m INFINITY i = m <= i)`;
val _ = overload_on("to", ``num_to``);
val _ = overload_on("to", ``xnum_to``);
val _ = set_fixity "to" (Infixl 500);
(******************************************************************************
* Extend subtraction (-) to extended numbers
******************************************************************************)
val SUB_num_xnum_def =
Define
`$SUB_num_xnum (m:num) (XNUM (n:num)) = XNUM((m:num) - (n:num)) `;
val SUB_xnum_num_def =
Define `$SUB_xnum_num (XNUM (m:num)) (n:num) = XNUM((m:num) - (n:num))`;
val SUB_xnum_xnum_def =
Define
`($SUB_xnum_xnum (XNUM (m:num)) (XNUM (n:num)) = XNUM((m:num) - (n:num)))
/\
($SUB_xnum_xnum INFINITY (XNUM (n:num)) = INFINITY)`;
val SUB =
save_thm
("SUB",
LIST_CONJ(type_rws ``:xnum`` @
[SUB_num_xnum_def,SUB_xnum_num_def,SUB_xnum_xnum_def]));
val _ = overload_on("-", ``SUB_num_xnum``);
val _ = overload_on("-", ``SUB_xnum_num``);
val _ = overload_on("-", ``SUB_xnum_xnum``);
(******************************************************************************
* Extend less-than predicate (<) to extended numbers
******************************************************************************)
val LS_num_xnum_def =
Define
`($LS_num_xnum (m:num) (XNUM (n:num)) = (m:num) < (n:num))
/\
($LS_num_xnum (m:num) INFINITY = T)`;
val LS_xnum_num_def =
Define
`($LS_xnum_num (XNUM (m:num)) (n:num) = (m:num) < (n:num))
/\
($LS_xnum_num INFINITY (n:num) = F)`;
val LS_xnum_xnum_def =
Define `$LS_xnum_xnum (XNUM (m:num)) (XNUM (n:num)) = (m:num) < (n:num)`;
val LS =
save_thm("LS",LIST_CONJ[LS_num_xnum_def,LS_xnum_num_def,LS_xnum_xnum_def]);
val _ = overload_on("<", ``LS_num_xnum``);
val _ = overload_on("<", ``LS_xnum_num``);
val _ = overload_on("<", ``LS_xnum_xnum``);
(******************************************************************************
* Extend greater-than predicate (>) to extended numbers
******************************************************************************)
val GT_num_xnum_def =
Define `$GT_num_xnum (m:num) (XNUM (n:num)) = (m:num) > (n:num)`;
val GT_num_xnum_def =
Define
`($GT_num_xnum (m:num) (XNUM (n:num)) = (m:num) > (n:num))
/\
($GT_num_xnum (m:num) INFINITY = F)`;
val GT_xnum_num_def =
Define
`($GT_xnum_num (XNUM (m:num)) (n:num) = (m:num) > (n:num))
/\
($GT_xnum_num INFINITY (n:num) = T)`;
val GT_xnum_xnum_def =
Define `$GT_xnum_xnum (XNUM (m:num)) (XNUM (n:num)) = (m:num) > (n:num)`;
val GT =
save_thm("GT",LIST_CONJ[GT_num_xnum_def,GT_xnum_num_def,GT_xnum_xnum_def]);
val _ = overload_on(">", ``GT_num_xnum``);
val _ = overload_on(">", ``GT_xnum_num``);
val _ = overload_on(">", ``GT_xnum_xnum``);
(******************************************************************************
* PLENGTH(FINITE l) = XNUM(LENGTH l)
* PLENGTH(INFINITE l) = INFINITY
******************************************************************************)
val PLENGTH_def =
Define `(PLENGTH(FINITE l) = XNUM(list$LENGTH l))
/\
(PLENGTH(INFINITE p) = INFINITY)`;
(*val PATH_LENGTH = save_thm("PATH_LENGTH",LENGTH_def);*)
val ALL_IN_INF = save_thm("ALL_IN_INF",prove(``!j. j IN 0 to INFINITY``, SIMP_TAC arith_ss [IN_DEF,xnum_to_def]));
(******************************************************************************
* PATH M p is true iff p is a path with respect to transition relation M.R
******************************************************************************)
val PATH_def = Define `PATH M p s = IS_INFINITE p /\ (ELEM p 0 = s) /\ (!n. M.R(ELEM p n, ELEM p (n+1)))`;
val PATH_INF = save_thm("PATH_INF",prove(``!M p s. PATH M p s ==> (PLENGTH p = INFINITY)``,
Induct_on `p` THEN
SIMP_TAC std_ss [IS_FINITE_def,PATH_def,IS_INFINITE_def,PLENGTH_def]));
val ALL_IN_INF_PATH = save_thm("ALL_IN_INF_PATH",prove(``!M p s j. PATH M p s ==> j IN 0 to PLENGTH p``,
Induct_on `p`
THENL [
SIMP_TAC arith_ss [PATH_def,IS_INFINITE_def],
SIMP_TAC std_ss [ALL_IN_INF,PLENGTH_def]
]));
(******************************************************************************
* C_SEM M s f means "M, s |= f"
* The mutual recursion is not necessary here, but makes fCTL defs easier
******************************************************************************)
val csem_eqns as [CEG_def, CEU_def, CEX_def,C_SEM_def_aux] =
TotalDefn.multiDefine
`(C_SEM M (C_BOOL b) s = B_SEM (M.L s) b) /\
(C_SEM M (C_NOT f) s = ~(C_SEM M f s)) /\
(C_SEM M (C_AND(f1,f2)) s = C_SEM M f1 s /\ C_SEM M f2 s) /\
(C_SEM M (C_EX f) s = CEX M (C_SEM M f) s) /\
(C_SEM M (C_EU(f1,f2)) s = CEU M (C_SEM M f1, C_SEM M f2) s) /\
(C_SEM M (C_EG f) s = CEG M (C_SEM M f) s) /\
(CEX M X s = ?p. PATH M p s /\ (ELEM p 1) IN X) /\
(CEU M (X1,X2) s = ?p. PATH M p s /\ ?k :: (0 to PLENGTH p). (ELEM p k) IN X2 /\ !j. j < k ==> (ELEM p j) IN X1) /\
(CEG M X s = ?p. PATH M p s /\ !j :: (0 to PLENGTH p). (ELEM p j) IN X)
`;
val C_SEM_def = save_thm("C_SEM_def",LIST_CONJ csem_eqns);
val CTL_MODEL_SAT_def = Define `CTL_MODEL_SAT M f = (!s. s IN M.S0 ==> C_SEM M f s)`
val C_AX_def = Define `C_AX (f: 'prop ctl) = C_NOT (C_EX (C_NOT f))`;
val C_EF_def = Define `C_EF (f: 'prop ctl) = C_EU(C_BOOL B_TRUE,f)`;
val C_AF_def = Define `C_AF (f: 'prop ctl) = C_NOT(C_EG (C_NOT f))`;
val C_AG_def = Define `C_AG (f: 'prop ctl) = C_NOT (C_EF (C_NOT f))`;
val C_AU_def = Define `C_AU ((f1: 'prop ctl),(f2: 'prop ctl)) = C_AND(C_NOT(C_EU(C_NOT f2,C_AND(C_NOT f1,C_NOT f2))),C_NOT(C_EG(C_NOT f2)))`;
val C_AR_def = Define `C_AR(f,g) = C_NOT (C_EU (C_NOT f,C_NOT g))`;
val C_OR_def = Define `C_OR((f1: 'prop ctl),(f2: 'prop ctl)) = C_NOT(C_AND(C_NOT f1, C_NOT f2))`;
val C_IMP_def = Define `C_IMP((f: 'prop ctl),(g: 'prop ctl)) = C_OR(C_NOT f,g)`;
val C_IFF_def = Define `C_IFF (f: 'prop ctl) (g: 'prop ctl) = C_AND(C_IMP(f,g),C_IMP(g,f))`;
val B_IMP_def = Define `B_IMP((f: 'a bexp),(g: 'a bexp)) = B_OR(B_NOT f,g)`;
val B_IFF_def = Define `B_IFF (f: 'a bexp) (g: 'a bexp) = B_AND(B_IMP(f,g),B_IMP(g,f))`;
val B_AND2_def = Define `B_AND2 (f: 'a bexp) (g: 'a bexp) = B_AND(f,g)`;
val B_OR2_def = Define `B_OR2 (f: 'a bexp) (g: 'a bexp) = B_OR(f,g)`;
val C_AND2_def = Define `C_AND2 (f: 'prop ctl) (g: 'prop ctl) = C_AND(f,g)`;
val C_OR2_def = Define `C_OR2 (f: 'prop ctl) (g: 'prop ctl) = C_OR(f,g)`;
val C_IMP2_def = Define `C_IMP2 (f: 'prop ctl) (g: 'prop ctl) = C_IMP(f,g)`;
val B_IMP2_def = Define `B_IMP2 (f: 'a bexp) (g: 'a bexp) = B_IMP(f,g)`;
val _ = overload_on ("~", mk_const("~",Type`:bool -> bool`));
val _ = overload_on ("~", (Term`C_NOT`));
val _ = overload_on ("~", (Term`B_NOT`));
val _ = overload_on ("~", mk_const("~",Type`:bool -> bool`));
fun prepOverload s = overload_on (s, mk_const(s,Type`:bool -> bool -> bool`));
val _ = app prepOverload ["/\\", "\\/","==>"];
val _ = overload_on ("/\\", (Term `C_AND2`)); val _ = prepOverload "/\\";
val _ = overload_on ("\\/", (Term `C_OR2`)); val _ = prepOverload "\\/";
val _ = overload_on ("/\\", (Term `B_AND2`)); val _ = prepOverload "/\\";
val _ = overload_on ("\\/", (Term `B_OR2`)); val _ = prepOverload "\\/";
val _ = overload_on ("==>", (Term `C_IMP2`)); val _ = prepOverload "==>";
val _ = overload_on ("==>", (Term `B_IMP2`)); val _ = prepOverload "==>";
val _ = overload_on ("=", (Term `C_IFF`)); val _ = prepOverload "=";
val _ = overload_on ("=", (Term `B_IFF`)); val _ = prepOverload "=";
val _ = overload_on ("T",Term`T:bool`); val _ = overload_on ("T",Term`B_TRUE`); val _ = overload_on ("T",Term`T:bool`);
val _ = overload_on ("F",Term`F:bool`); val _ = overload_on ("F",Term`B_FALSE`); val _ = overload_on ("F",Term`F:bool`);
(* FIXME: these NNF defs are not right because they do not move all negs inwards to atoms (because OR is defined in terms of AND, etc)*)
val BEXP_NNF = Define `
(BEXP_NNF B_TRUE = B_TRUE) /\
(BEXP_NNF (B_PROP p) = B_PROP p) /\
(BEXP_NNF (B_AND(b1,b2)) = B_AND(BEXP_NNF b1,BEXP_NNF b2)) /\
(BEXP_NNF (B_NOT B_TRUE) = B_FALSE) /\
(BEXP_NNF (B_NOT (B_PROP p)) = B_NOT (B_PROP p)) /\
(BEXP_NNF (B_NOT (B_NOT b)) = BEXP_NNF b) /\
(BEXP_NNF (B_NOT (B_AND(b1,b2)))= B_OR(BEXP_NNF (B_NOT b1),BEXP_NNF (B_NOT b2)))`
val CTL_NNF = Define `
(CTL_NNF (C_BOOL b) = C_BOOL b) /\
(CTL_NNF (C_AND(f,g)) = C_AND(CTL_NNF f,CTL_NNF g)) /\
(CTL_NNF (C_EX f) = C_EX (CTL_NNF f)) /\
(CTL_NNF (C_EG f) = C_EG (CTL_NNF f)) /\
(CTL_NNF (C_EU(f,g)) = C_EU (CTL_NNF f,CTL_NNF g)) /\
(CTL_NNF (C_NOT (C_BOOL b)) = (C_BOOL (BEXP_NNF (B_NOT b)))) /\
(CTL_NNF (C_NOT (C_AND(f,g))) = (C_OR(CTL_NNF(C_NOT f),CTL_NNF(C_NOT g)))) /\
(CTL_NNF (C_NOT (C_NOT f)) = CTL_NNF f) /\
(CTL_NNF (C_NOT (C_EX f)) = (C_AX (CTL_NNF (C_NOT f)))) /\
(CTL_NNF (C_NOT (C_EG f)) = (C_AF (CTL_NNF (C_NOT f)))) /\
(CTL_NNF (C_NOT (C_EU(f,g))) = (C_AR(CTL_NNF (C_NOT f),CTL_NNF (C_NOT g))))`;
val ctl_size_def = snd (TypeBase.size_of ``:'a ctl``)
val ctl_size2_def = Define `ctl_size2 (f: 'prop ctl) = ctl_size (\(a:('prop)).0) f`
val bexp_size_def = snd (TypeBase.size_of ``:'a bexp``);
val bexp_size2_def = Define `bexp_size2 (b: 'prop bexp) = bexp_size (\(a:('prop)).0) b`
val bexp_pstv_size = Define `
(bexp_pstv_size B_TRUE = 0) /\
(bexp_pstv_size (B_PROP p) = 1) /\
(bexp_pstv_size (B_AND(b1,b2)) = 1+(bexp_pstv_size b1)+(bexp_pstv_size b2)) /\
(bexp_pstv_size (B_NOT b) = (bexp_pstv_size b))`
val ctl_pstv_size = Define `
(ctl_pstv_size (C_BOOL b) = 1+(bexp_pstv_size b)) /\
(ctl_pstv_size (C_AND(f1,f2)) = 1+(ctl_pstv_size f1) + (ctl_pstv_size f2)) /\
(ctl_pstv_size (C_NOT f) = (ctl_pstv_size f)) /\
(ctl_pstv_size (C_EX f) = 1+(ctl_pstv_size f)) /\
(ctl_pstv_size (C_EG f) = 1+(ctl_pstv_size f)) /\
(ctl_pstv_size (C_EU(f1,f2)) =1+(ctl_pstv_size f1) + (ctl_pstv_size f2))`
(*val cdefn = Defn.Hol_defn "CTL_NNF" `
(CTL_NNF (C_BOOL b) = C_BOOL b) /\
(CTL_NNF (C_AND(f,g)) = C_AND(CTL_NNF f,CTL_NNF g)) /\
(CTL_NNF (C_EX f) = C_EX (CTL_NNF f)) /\
(CTL_NNF (C_EG f) = C_EG (CTL_NNF f)) /\
(CTL_NNF (C_EU(f,g)) = C_EU (CTL_NNF f,CTL_NNF g)) /\
(CTL_NNF (C_NOT (C_BOOL b)) = (C_BOOL (BEXP_NNF (B_NOT b)))) /\
(CTL_NNF (C_NOT (C_AND(f,g))) = (C_OR(CTL_NNF(C_NOT f),CTL_NNF(C_NOT g)))) /\
(CTL_NNF (C_NOT (C_NOT f)) = CTL_NNF f) /\
(CTL_NNF (C_NOT (C_EX f)) = (C_AX (CTL_NNF (C_NOT f)))) /\
(CTL_NNF (C_NOT (C_EG f)) = (C_AF (CTL_NNF (C_NOT f)))) /\
(CTL_NNF (C_NOT (C_EU(f,g))) = (C_AR(CTL_NNF (C_NOT f),CTL_NNF (C_NOT g))))`;
val (CTL_NNF_def,CTL_NNF_ind) = Defn.tprove(cdefn,
WF_REL_TAC `measure ctl_pstv_size`
THEN REPEAT (FIRST [Induct_on `f`,Induct_on `g`,Induct_on `b`])
THEN FULL_SIMP_TAC arith_ss [ctl_pstv_size,bexp_pstv_size,C_AX_def,C_AR_def,C_AF_def,BEXP_NNF,B_OR_def,B_FALSE_def]*)
val CTL_BOOL_SUB = Define `
(CTL_BOOL_SUB g (B_PROP (b:'prop)) = (g = B_PROP b)) /\
(CTL_BOOL_SUB g (B_NOT be1) = (CTL_BOOL_SUB g be1) \/ (g = B_NOT be1)) /\
(CTL_BOOL_SUB g (B_AND(be1,be2)) = (CTL_BOOL_SUB g be1) \/ (CTL_BOOL_SUB g be2) \/ (g = B_AND(be1,be2)))`;
val CTL_SUB = Define `
(CTL_SUB g (C_BOOL b) = ?b'. (g = C_BOOL b') /\ CTL_BOOL_SUB b' b) /\
(CTL_SUB g (C_AND(f1,f2)) = (CTL_SUB g f1) \/ (CTL_SUB g f2) \/ (g = C_AND(f1,f2))) /\
(CTL_SUB g (C_NOT f) = (CTL_SUB g f) \/ (g=C_NOT f)) /\
(CTL_SUB g (C_EX f) = (CTL_SUB g f) \/ (g=C_EX f)) /\
(CTL_SUB g (C_EG f) = (CTL_SUB g f) \/ (g=C_EG f)) /\
(CTL_SUB g (C_EU(f1,f2)) = (CTL_SUB g f1) \/ (CTL_SUB g f2) \/ (g=C_EU(f1,f2)))`;
val IS_ACTL = Define `IS_ACTL f = (!g. ~CTL_SUB (C_EX g) (CTL_NNF f)) /\ (!g. ~CTL_SUB (C_EG g) (CTL_NNF f)) /\ (!g1 g2. ~CTL_SUB (C_EU(g1,g2)) (CTL_NNF f))`;
val CTL_NNF_ID = save_thm("CTL_NNF_ID",prove(``!f M. C_SEM M (CTL_NNF f) = C_SEM M f``,
REWRITE_TAC [FUN_EQ_THM]
THEN recInduct (theorem "CTL_NNF_ind") THEN REPEAT CONJ_TAC THEN SIMP_TAC std_ss [CTL_NNF]
THEN REWRITE_TAC [FUN_EQ_THM,C_AR_def,C_AX_def,C_AF_def,C_OR_def] THEN SIMP_TAC std_ss [C_SEM_def]
THEN recInduct (theorem "BEXP_NNF_ind") THEN REPEAT CONJ_TAC THEN SIMP_TAC std_ss [BEXP_NNF]
THEN REWRITE_TAC [FUN_EQ_THM,B_FALSE_def,B_OR_def] THEN SIMP_TAC std_ss [B_SEM_def]
));
(******************************************************************************
* REST(INFINITE f) = INFINITE(\n. f(n+1))
******************************************************************************)
val REST_INFINITE =
store_thm
("REST_INFINITE",
``!f. REST (INFINITE f) = INFINITE(\n. f(n+1))``,
RW_TAC list_ss [REST_def]);
(******************************************************************************
* RESTN (INFINITE f) i = INFINITE(\n. f(n+i))
******************************************************************************)
val RESTN_INFINITE =
store_thm
("RESTN_INFINITE",
``!f i. RESTN (INFINITE f) i = INFINITE(\n. f(n+i))``,
Induct_on `i`
THEN RW_TAC list_ss
[REST_INFINITE,ETA_AX,RESTN_def,
DECIDE``i + (n + 1) = n + SUC i``]);
val REST_FINITE =
store_thm
("REST_FINITE",
``!l. REST (FINITE l) = FINITE(TL l)``,
RW_TAC list_ss [REST_def]);
val _ = export_theory()