-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathmuSyntaxScript.sml
653 lines (531 loc) · 34.7 KB
/
muSyntaxScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
open HolKernel Parse boolLib bossLib
val _ = new_theory("muSyntax")
open bossLib
open pairTheory
open pairLib
open pairTools
open pairSyntax
open pred_setTheory
open pred_setLib
open listTheory
open stringTheory
open sumTheory
open simpLib
open stringLib
open numLib
open metisLib
open ksTheory
open setLemmasTheory
open reachTheory
infix && infix 8 by
fun tsimps ty = let val {convs,rewrs} = TypeBase.simpls_of ty in rewrs end
(* ======================propositional mu calculus: types,syntax,semantics etc =======================*)
(* note to self: using string rather than mu (in RV,<>,[]) because the terms denoted are not themselves mu-calc formulae *)
(* even though this approach clutters up the syntax with double quotes, it is the right way to do things *)
(* however, using strings for bound vars of mu an nu is a hack because it is a pain getting general support for binders *)
val _ = bossLib.Hol_datatype `
mu = TR
| FL
| Not of mu
| And of mu => mu
| Or of mu => mu
| RV of string (* relational var *)
| AP of 'prop (* atomic proposition *)
| DIAMOND of string => mu (* diamond *)
| BOX of string => mu (* box *)
| mu of string => mu (* lfp *)
| nu of string => mu` (* mfp *)
val tsimps_mu = tsimps ``:'prop mu``;
val mu_size_def = snd (TypeBase.size_of ``:'prop mu``)
val mu_size2_def = Define `mu_size2 (f: 'prop mu) = mu_size (\(a:('prop)).0) f`
val _ = add_rule
{term_name = "AP", fixity = Prefix 950, (* 950 is tighter than ~ *)
pp_elements = [TOK "AP", HardSpace 1],
paren_style = OnlyIfNecessary,
block_style = (AroundSamePrec, (PP.INCONSISTENT, 0))}
(* overload ~,/\,\/,T and F give priority to the boolean versions *)
val _ = overload_on ("~", mk_const("~",``:bool -> bool``))
val _ = overload_on ("~", (``$Not``))
val _ = overload_on ("~", mk_const("~",``:bool -> bool``))
fun prepOverload s = overload_on (s, mk_const(s,``:bool -> bool -> bool``))
val _ = app prepOverload ["/\\", "\\/"]
val _ = overload_on ("/\\", (``$And``)) val _ = prepOverload "/\\"
val _ = overload_on ("\\/", (``$Or``)) val _ = prepOverload "\\/"
val _ = overload_on ("T",T) val _ = overload_on ("T",``TR``) val _ = overload_on ("T",T)
val _ = overload_on ("F",F) val _ = overload_on ("F",``FL``) val _ = overload_on ("F",F)
(* make syntax for DIAMOND, BOX, lfp and mfp (somewhat) resemble standard notation *)
(* Need to use << and >> because of precedence conflicts with < and > *)
(* prec 2501 is higher fixity than any thing in default term grammar WIP: does this make sense...not really, should be lower *)
val _ = add_rule {term_name = "DIAMOND", fixity = Prefix 2501,
pp_elements = [TOK "<<", TM, TOK ">>", HardSpace 1],
paren_style = OnlyIfNecessary,
block_style = (AroundSamePrec, (PP.INCONSISTENT, 0))}
(* Could actually use [ and ] here by declaring CloseFix fixity. But this is for consistency with lfp *)
val _ = add_rule {term_name = "BOX", fixity = Prefix 2501,
pp_elements = [TOK "[[", TM, TOK "]]",HardSpace 1],
paren_style = OnlyIfNecessary,
block_style = (AroundSamePrec, (PP.INCONSISTENT, 0))}
val _ = add_rule {term_name = "mu", fixity = Prefix 2,
pp_elements = [TOK "mu",HardSpace 1, TM, TOK "..",HardSpace 1],
paren_style = OnlyIfNecessary,
block_style = (AroundSamePrec, (PP.INCONSISTENT, 0))}
val _ = add_rule {term_name = "nu", fixity = Prefix 2,
pp_elements = [TOK "nu", HardSpace 1, TM, TOK "..",HardSpace 1],
paren_style = OnlyIfNecessary,
block_style = (AroundSamePrec, (PP.INCONSISTENT, 0))}
(* defns for checking well-formedness of a mu-formula (bound vars must occur +vely within its scope) *)
(* RVNEG(f,Q) == in f, all free ocurrances of Q are negated *)
val RVNEG_def = save_thm("RVNEG_def",Define`
(RVNEG rv (T:'prop mu) = (T:'prop mu)) /\
(RVNEG rv F = F) /\
(RVNEG rv (f /\ g) = (RVNEG rv f) /\ (RVNEG rv g)) /\
(RVNEG rv (f \/ g) = (RVNEG rv f) \/ (RVNEG rv g)) /\
(RVNEG rv (AP p) = AP p) /\
(RVNEG rv (RV Q) = if (rv=Q) then (~(RV Q)) else (RV Q)) /\
(RVNEG rv (<<a>> f) = <<a>> (RVNEG rv f)) /\
(RVNEG rv ([[a]] f) = [[a]] (RVNEG rv f)) /\
(RVNEG rv (mu Q .. f) = if (rv=Q) then (mu Q .. f) else (mu Q .. (RVNEG rv f))) /\
(RVNEG rv (nu Q .. f) = if (rv=Q) then (nu Q .. f) else (nu Q .. (RVNEG rv f))) /\
(RVNEG rv (~f) = ~(RVNEG rv f))`)
val mu_pnf = Hol_defn "NNF" `
(NNF (T:'prop mu) = (T:'prop mu)) /\
(NNF F = F) /\
(NNF (f /\ g) = NNF f /\ NNF g) /\
(NNF (f \/ g) = NNF f \/ NNF g) /\
(NNF (AP p) = AP p) /\
(NNF (RV Q) = RV Q) /\
(NNF (<<a>> f) = <<a>> (NNF f)) /\
(NNF ([[a]] f) = [[a]] (NNF f)) /\
(NNF (mu Q .. f) = mu Q .. (NNF f)) /\
(NNF (nu Q .. f) = nu Q .. (NNF f)) /\
(NNF (~T) = F) /\
(NNF (~F) = T) /\
(NNF (~(f /\ g)) = ((NNF ~f)) \/ ((NNF ~g))) /\
(NNF (~(f \/ g)) = ((NNF ~f)) /\ ((NNF ~g))) /\
(NNF (~(AP p)) = ~(AP p)) /\
(NNF (~(RV Q)) = ~(RV Q)) /\
(NNF (~(<<a>> f)) = [[a]] (NNF ~f)) /\
(NNF (~([[a]] f)) = <<a>> (NNF ~f)) /\
(NNF (~~f) = NNF f) /\
(NNF (~(mu Q.. f)) = nu Q.. (NNF(RVNEG Q (~f)))) /\
(NNF (~(nu Q.. f)) = mu Q.. (NNF(RVNEG Q (~f))))`
val mu_pstv_size_def = Define`
(mu_pstv_size (T:'prop mu) = mu_size2 (T: 'prop mu)) /\
(mu_pstv_size (F:'prop mu) = mu_size2 (F: 'prop mu)) /\
(mu_pstv_size (f /\ g) = 1+ (mu_pstv_size f + mu_pstv_size g)) /\
(mu_pstv_size (f \/ g) = 1+ (mu_pstv_size f + mu_pstv_size g)) /\
(mu_pstv_size ((AP (p:'prop)):'prop mu) = mu_size2 ((AP (p:'prop)):'prop mu)) /\
(mu_pstv_size ((RV (Q:string)):'prop mu) = mu_size2 ((RV (Q:string)):'prop mu)) /\
(mu_pstv_size (<<(a:string)>> f) = 1 + (mu_pstv_size f)) /\
(mu_pstv_size ([[(a:string)]] f) = 1+ (mu_pstv_size f)) /\
(mu_pstv_size (mu (Q:string) .. f) = 1+ (STRLEN Q + mu_pstv_size f)) /\
(mu_pstv_size (nu (Q:string) .. f) = 1+ (STRLEN Q + mu_pstv_size f)) /\
(mu_pstv_size (~f) = mu_pstv_size f)`
val mu_pstv_size_lemma1 = prove(``!f Q. mu_pstv_size (RVNEG Q f) = mu_pstv_size f``,
Induct_on `f` THEN RW_TAC std_ss [mu_pstv_size_def,RVNEG_def] THEN RW_TAC arith_ss [mu_pstv_size_def,RVNEG_def])
val mu_pstv_size_lemma2 = prove(``!f Q. mu_pstv_size (RVNEG Q (~f)) = mu_pstv_size f``,
Induct_on `f` THEN RW_TAC std_ss [mu_pstv_size_def,RVNEG_def]
THEN RW_TAC arith_ss [mu_pstv_size_def,RVNEG_def,mu_pstv_size_lemma1])
val (NNF_def,NNF_IND_def) = Defn.tprove(mu_pnf,WF_REL_TAC `inv_image ($< LEX $<) (\f. (mu_pstv_size f,mu_size2 f))` THEN RW_TAC std_ss [mu_size_def,mu_size2_def,mu_pstv_size_def] THEN RW_TAC arith_ss [mu_pstv_size_lemma2])
val _ = save_thm("NNF_def",NNF_def)
val _ = save_thm("NNF_IND_def",NNF_IND_def)
val MU_SUB_def = save_thm("MU_SUB_def",Define `
(SUBFORMULA (g:'prop mu) (T:'prop mu) = (g = T)) /\
(SUBFORMULA g F = (g = F)) /\
(SUBFORMULA g (~f) = (SUBFORMULA g f) \/ (g=~f)) /\
(SUBFORMULA g (f1 /\ f2) = (SUBFORMULA g f1) \/ (SUBFORMULA g f2) \/ (g = f1 /\ f2)) /\
(SUBFORMULA g (f1 \/ f2) = (SUBFORMULA g f1) \/ (SUBFORMULA g f2) \/ (g = f1 \/ f2)) /\
(SUBFORMULA g (RV Q) = (g = RV Q)) /\
(SUBFORMULA g (AP p) = (g = AP p)) /\
(SUBFORMULA g (<<a>> f) = (SUBFORMULA g f) \/ (g = <<a>> f)) /\
(SUBFORMULA g ([[a]] f) = (SUBFORMULA g f) \/ (g = [[a]] f)) /\
(SUBFORMULA g (mu Q.. f) = (SUBFORMULA g f) \/ (g = mu Q.. f)) /\
(SUBFORMULA g (nu Q.. f) = (SUBFORMULA g f) \/ (g = nu Q.. f))`)
val _ = add_rule
{term_name = "SUBFORMULA", fixity = Infix (NONASSOC,450),
pp_elements = [HardSpace 1,TOK "SUBF",HardSpace 1],
paren_style = OnlyIfNecessary,
block_style = (AroundSamePrec, (PP.INCONSISTENT, 0))}
val IMF_def = save_thm("IMF_def",Define `
(IMF (T:'prop mu) = T) /\
(IMF F = T) /\
(IMF (~f) = IMF f) /\
(IMF (f1 /\ f2) = (IMF f1) /\ (IMF f2)) /\
(IMF (f1 \/ f2) = (IMF f1) /\ (IMF f2)) /\
(IMF (RV Q) = T) /\
(IMF (AP p) = T) /\
(IMF (<<a>> f) = IMF f) /\
(IMF ([[a]] f) = IMF f) /\
(IMF (mu Q.. f) = ~(SUBFORMULA (~RV Q) (NNF f)) /\ (IMF f)) /\
(IMF (nu Q.. f) = ~(SUBFORMULA (~RV Q) (NNF f)) /\ (IMF f))`)
val FV_def = save_thm("FV_def",Define `
(FV (T:'prop mu) = {}) /\
(FV F = {}) /\
(FV (~f) = FV f) /\
(FV (f1 /\ f2) = (FV f1) UNION (FV f2)) /\
(FV (f1 \/ f2) = (FV f1) UNION (FV f2)) /\
(FV (RV Q) = {Q}) /\
(FV (AP p) = {}) /\
(FV (<<a>> f) = FV f) /\
(FV ([[a]] f) = FV f) /\
(FV (mu Q.. f) = (FV f) DELETE Q) /\
(FV (nu Q.. f) = (FV f) DELETE Q)`)
val ALLV_def = save_thm("ALLV_def",Define `
(ALLV (T:'prop mu) = {}) /\
(ALLV F = {}) /\
(ALLV (~f) = ALLV f) /\
(ALLV (f1 /\ f2) = (ALLV f1) UNION (ALLV f2)) /\
(ALLV (f1 \/ f2) = (ALLV f1) UNION (ALLV f2)) /\
(ALLV (RV Q) = {Q}) /\
(ALLV (AP p) = {}) /\
(ALLV (<<a>> f) = ALLV f) /\
(ALLV ([[a]] f) = ALLV f) /\
(ALLV (mu Q.. f) = (ALLV f)) /\
(ALLV (nu Q.. f) = (ALLV f))`)
val CLOSED_def = save_thm("CLOSED_def",Define `CLOSED (f:'prop mu) = (FV f = {})`)
val IS_PROP_def = Define `
(IS_PROP (T:'prop mu) = T) /\
(IS_PROP F = T) /\
(IS_PROP (~f) = IS_PROP f) /\
(IS_PROP (f1 /\ f2) = (IS_PROP f1) /\ (IS_PROP f2)) /\
(IS_PROP (f1 \/ f2) = (IS_PROP f1) /\ (IS_PROP f2)) /\
(IS_PROP (RV Q) = F) /\
(IS_PROP (AP p) = T) /\
(IS_PROP (<<a>> f) = F) /\
(IS_PROP ([[a]] f) = F) /\
(IS_PROP (mu Q.. f) = F) /\
(IS_PROP (nu Q.. f) = F)`
val AP_SUBST_def = Define `
(AP_SUBST g ap (T:'prop mu) = (T:'prop mu)) /\
(AP_SUBST g ap F = F) /\
(AP_SUBST g ap (~f) = ~(AP_SUBST g ap f)) /\
(AP_SUBST g ap (f1 /\ f2) = (AP_SUBST g ap f1) /\ (AP_SUBST g ap f2)) /\
(AP_SUBST g ap (f1 \/ f2) = (AP_SUBST g ap f1) \/ (AP_SUBST g ap f2)) /\
(AP_SUBST g ap (RV Q) = (RV Q)) /\
(AP_SUBST g ap (AP p) = if (p=ap) then g else AP p) /\
(AP_SUBST g ap (<<a>> f) = <<a>> (AP_SUBST g ap f)) /\
(AP_SUBST g ap ([[a]] f) = [[a]] (AP_SUBST g ap f)) /\
(AP_SUBST g ap (mu Q.. f) = (mu Q.. (AP_SUBST g ap f))) /\
(AP_SUBST g ap (nu Q.. f) = (nu Q.. (AP_SUBST g ap f)))`
val RVNEG_SYM = store_thm("RVNEG_SYM",
``!Q Q' (f:'prop mu). RVNEG Q (RVNEG Q' f) = RVNEG Q' (RVNEG Q f)``,
REPEAT GEN_TAC
THEN Induct_on `f` THEN SIMP_TAC std_ss (RVNEG_def::tsimps ``:'prop mu``) THEN
FULL_SIMP_TAC std_ss [] THENL [
PROVE_TAC [],
PROVE_TAC [],
Q.X_GEN_TAC `s`
THEN Cases_on `Q=Q'` THEN
REPEAT (Cases_on `Q'=s` THEN
REPEAT (Cases_on `Q=s` THEN FULL_SIMP_TAC std_ss [RVNEG_def])),(*RV*)
Q.X_GEN_TAC `s`
THEN Cases_on `Q=Q'` THENL [
Cases_on `Q'=s` THEN REPEAT (Cases_on `Q=s` THEN
(FULL_SIMP_TAC std_ss [RVNEG_def] ORELSE
PROVE_TAC [])),
Cases_on `Q'=s` THENL [
Cases_on `Q=s` THENL [
FULL_SIMP_TAC std_ss [RVNEG_def],
FULL_SIMP_TAC std_ss [RVNEG_def]
],
Cases_on `Q=s` THENL [
FULL_SIMP_TAC std_ss [RVNEG_def],
FULL_SIMP_TAC std_ss [RVNEG_def] THEN PROVE_TAC []
]
]
], (* mu *)
(* nu *)
Q.X_GEN_TAC `s`
THEN Cases_on `Q=Q'` THENL [
Cases_on `Q'=s` THEN
REPEAT (Cases_on `Q=s` THEN
(FULL_SIMP_TAC std_ss [RVNEG_def] ORELSE ASSUM_LIST PROVE_TAC)),
Cases_on `Q'=s` THENL [
Cases_on `Q=s` THENL [
FULL_SIMP_TAC std_ss [RVNEG_def],
FULL_SIMP_TAC std_ss [RVNEG_def]
],
Cases_on `Q=s` THENL [
FULL_SIMP_TAC std_ss [RVNEG_def],
FULL_SIMP_TAC std_ss [RVNEG_def]
THEN ASSUM_LIST PROVE_TAC
]
]
]
])
val IMF_NEG_NEG_LEM1 = save_thm("IMF_NEG_NEG_LEM1",prove(``!(f:'prop mu) Q Q'. ~(Q'=Q) ==> (~SUBFORMULA (~RV Q) (NNF (RVNEG Q' f)) = ~SUBFORMULA (~RV Q) (NNF f))``,
recInduct NNF_IND_def THEN REPEAT CONJ_TAC THEN BETA_TAC THEN SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu) THENL [
REPEAT GEN_TAC THEN DISCH_TAC
THEN FULL_SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu)
THEN Cases_on `Q''=Q` THENL [
FULL_SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu),
FULL_SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu)],
REPEAT STRIP_TAC THEN Cases_on `Q''=Q` THENL [
FULL_SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu),
FULL_SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu)],
REPEAT STRIP_TAC THEN Cases_on `Q''=Q` THENL [
FULL_SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu),
FULL_SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu)],
REPEAT GEN_TAC THEN DISCH_TAC
THEN FULL_SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu)
THEN Cases_on `Q''=Q` THENL [
FULL_SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu),
FULL_SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu)],
REPEAT STRIP_TAC THEN Cases_on `Q''=Q` THENL [
FULL_SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu),
FULL_SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu)
THEN FULL_SIMP_TAC std_ss [RVNEG_SYM]], (* mu *)
REPEAT STRIP_TAC THEN Cases_on `Q''=Q` THENL [
FULL_SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu),
FULL_SIMP_TAC std_ss ([NNF_def,RVNEG_def,IMF_def,MU_SUB_def]@tsimps_mu)
THEN FULL_SIMP_TAC std_ss [RVNEG_SYM]]])) (* nu *)
val IMF_INV_RVNEG = store_thm(
"IMF_INV_RVNEG",
``!(f: 'prop mu) Q. IMF (RVNEG Q f) = IMF f``,
Induct_on `f` THEN
FULL_SIMP_TAC std_ss ([IMF_def,MU_SUB_def,RVNEG_def]@tsimps_mu) THENL [
(* RV *)
SRW_TAC [][IMF_def],
(* mu *)
MAP_EVERY Q.X_GEN_TAC [`s`, `Q`] THEN Cases_on `Q=s` THEN
FULL_SIMP_TAC std_ss [IMF_def,MU_SUB_def] THEN
FULL_SIMP_TAC std_ss [IMF_NEG_NEG_LEM1],
(* nu *)
MAP_EVERY Q.X_GEN_TAC [`s`, `Q`] THEN Cases_on `Q=s` THEN
FULL_SIMP_TAC std_ss [IMF_def,MU_SUB_def] THEN
FULL_SIMP_TAC std_ss [IMF_NEG_NEG_LEM1]
])
val IMF_INV_NEG_RVNEG = save_thm("IMF_INV_NEG_RVNEG",prove (``!f Q. IMF (f:'prop mu) = IMF (RVNEG Q ~f)``,
SIMP_TAC std_ss [RVNEG_def,GSYM IMF_INV_RVNEG,IMF_def]))
val STATES_MONO_NEG_MU_LEM1 = save_thm("STATES_MONO_NEG_MU_LEM1",prove(``!Q' Q (f:'prop mu) . SUBFORMULA (~RV Q') (NNF ~mu Q.. f) = SUBFORMULA (~RV Q') (NNF (RVNEG Q ~f))``,SIMP_TAC std_ss ([NNF_def,MU_SUB_def]@tsimps_mu)))
val STATES_MONO_LEM2 = save_thm("STATES_MONO_LEM2",prove (``!(f:'prop mu) Q Q'. ~(Q'=Q) ==> (SUBFORMULA (~RV Q') (NNF f) = SUBFORMULA (~RV Q') (NNF (RVNEG Q f)))``,
recInduct NNF_IND_def THEN REPEAT CONJ_TAC THEN BETA_TAC THEN (SIMP_TAC std_ss ([NNF_def,MU_SUB_def,RVNEG_def]@tsimps_mu)) THENL [
PROVE_TAC [], (* /\ *)
PROVE_TAC [], (* \/ *)
REPEAT GEN_TAC THEN DISCH_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@tsimps_mu),
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@tsimps_mu)], (* RV *)
REPEAT STRIP_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@tsimps_mu),
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@tsimps_mu)], (* mu *)
REPEAT STRIP_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@tsimps_mu),
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@tsimps_mu)], (* nu *)
PROVE_TAC [], (* ~/\ *)
PROVE_TAC [], (* ~\/ *)
REPEAT GEN_TAC THEN DISCH_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@tsimps_mu),
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@tsimps_mu)], (* ~RV *)
REPEAT STRIP_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@tsimps_mu),
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@tsimps_mu)
THEN FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def,RVNEG_SYM]@tsimps_mu)], (* ~ mu *)
REPEAT STRIP_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@tsimps_mu),
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@tsimps_mu)
THEN FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def,RVNEG_SYM]@tsimps_mu)]])) (* ~ nu *)
val NNF_RVNEG_DUALITY = save_thm("NNF_RVNEG_DUALITY",prove(``!(f:'prop mu) Q. NNF (RVNEG Q (RVNEG Q f)) = NNF f``,
recInduct NNF_IND_def THEN REPEAT CONJ_TAC THEN BETA_TAC THEN FULL_SIMP_TAC std_ss (NNF_def::MU_SUB_def::RVNEG_def::tsimps_mu) THENL [
REPEAT GEN_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss (RVNEG_def::NNF_def::tsimps_mu),
FULL_SIMP_TAC std_ss (RVNEG_def::NNF_def::tsimps_mu)], (* RV *)
REPEAT STRIP_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss (RVNEG_def::NNF_def::tsimps_mu),
FULL_SIMP_TAC std_ss (RVNEG_def::NNF_def::tsimps_mu)], (* mu *)
REPEAT STRIP_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss (RVNEG_def::NNF_def::tsimps_mu),
FULL_SIMP_TAC std_ss (RVNEG_def::NNF_def::tsimps_mu)], (* nu *)
REPEAT GEN_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss (RVNEG_def::NNF_def::tsimps_mu),
FULL_SIMP_TAC std_ss (RVNEG_def::NNF_def::tsimps_mu)], (* ~RV *)
REPEAT STRIP_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss (RVNEG_def::NNF_def::tsimps_mu),
FULL_SIMP_TAC std_ss (RVNEG_SYM::RVNEG_def::NNF_def::tsimps_mu)], (* ~mu *)
REPEAT STRIP_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss (RVNEG_def::NNF_def::tsimps_mu),
FULL_SIMP_TAC std_ss (RVNEG_SYM::RVNEG_def::NNF_def::tsimps_mu)]])) (* ~nu *)
val IMF_MU_IFF_IMF_NU=save_thm("IMF_MU_IFF_IMF_NU",prove(``!(f:'prop mu) Q. IMF (mu Q..f) = IMF (nu Q..f)``,SIMP_TAC std_ss [IMF_def]))
val ALLV_RVNEG = prove(``!f Q. ALLV f = ALLV (RVNEG Q f)``,
Induct_on `f` THEN FULL_SIMP_TAC std_ss ([UNION_DEF,SET_SPEC,RVNEG_def,ALLV_def]@tsimps_mu) THENL [
ONCE_REWRITE_TAC [EXTENSION]
THEN FULL_SIMP_TAC std_ss [SET_SPEC]
THEN METIS_TAC [],
ONCE_REWRITE_TAC [EXTENSION]
THEN FULL_SIMP_TAC std_ss [SET_SPEC]
THEN METIS_TAC [],
SRW_TAC [][ALLV_def],
SRW_TAC [][ALLV_def],
SRW_TAC [][ALLV_def]
])
val ALLV_NNF = prove(``!f. ALLV f = ALLV (NNF f)``,
recInduct NNF_IND_def THEN REPEAT CONJ_TAC THEN BETA_TAC
THEN FULL_SIMP_TAC std_ss ([GSYM ALLV_RVNEG,NNF_def,RVNEG_def,NOT_IN_EMPTY,MU_SUB_def,ALLV_def]@tsimps_mu))
val ALLV_SUBF = prove(``!f Q. (RV Q) SUBF f = Q IN ALLV f``,
Induct_on `f` THEN FULL_SIMP_TAC std_ss ([IN_SING,UNION_DEF,SET_SPEC,NOT_IN_EMPTY,MU_SUB_def,ALLV_def]@tsimps_mu))
val ALLV_FINITE = prove(``!f. FINITE (ALLV f)``,
Induct_on `f` THEN FULL_SIMP_TAC std_ss [FINITE_EMPTY,FINITE_UNION,ALLV_def,FINITE_SING])
val CLOSED_NEG = save_thm("CLOSED_NEG",prove(``!f. CLOSED (~f) = CLOSED f``,Induct_on `f` THEN FULL_SIMP_TAC std_ss ([CLOSED_def,FV_def]@tsimps_mu)))
val CLOSED_AND = save_thm("CLOSED_AND",prove(``!f g. CLOSED (f /\ g) = CLOSED f /\ CLOSED g``,Induct_on `f` THEN FULL_SIMP_TAC std_ss ([CLOSED_def,FV_def,UNION_EMPTY,EMPTY_UNION]@tsimps_mu)))
val CLOSED_OR = save_thm("CLOSED_OR",prove(``!f g. CLOSED (f \/ g) = CLOSED f /\ CLOSED g``,Induct_on `f` THEN FULL_SIMP_TAC std_ss ([CLOSED_def,FV_def,UNION_EMPTY,EMPTY_UNION]@tsimps_mu)))
val CLOSED_AP = save_thm("CLOSED_AP",prove(``!p. CLOSED (AP p)``,FULL_SIMP_TAC std_ss ([CLOSED_def,FV_def,UNION_EMPTY,EMPTY_UNION]@tsimps_mu)))
val CLOSED_BOX = save_thm("CLOSED_BOX",prove(``!f a. CLOSED ([[a]] f) = CLOSED f``,Induct_on `f` THEN FULL_SIMP_TAC std_ss ([CLOSED_def,FV_def,UNION_EMPTY,EMPTY_UNION]@tsimps_mu)))
val CLOSED_DMD = save_thm("CLOSED_DMD",prove(``!f a. CLOSED (<<a>> f) = CLOSED f``,Induct_on `f` THEN FULL_SIMP_TAC std_ss ([CLOSED_def,FV_def,UNION_EMPTY,EMPTY_UNION]@tsimps_mu)))
(* thms about subformulas *)
val SUBF_REFL = save_thm("SUBF_REFL",prove(``!f. f SUBF f``,Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUBF_NEG = prove(``!f g. ~(g SUBF f) ==> ~(~g SUBF f)``,
Induct_on `f` THEN Induct_on `g` THEN FULL_SIMP_TAC std_ss ([MU_SUB_def]@tsimps_mu)
THEN TRY (METIS_TAC (MU_SUB_def::tsimps_mu)))
val SUBF_NEG2 = prove(``!f g. (~g SUBF f) ==> (g SUBF f)``, PROVE_TAC [SUBF_NEG])
val SUBF_CONJ = save_thm("SUBF_CONJ",prove(``!f g h. (f /\ g) SUBF h ==> f SUBF h /\ g SUBF h``,
Induct_on `h` THEN REPEAT CONJ_TAC THEN FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def]@tsimps_mu)
THEN REPEAT STRIP_TAC THEN (FIRST_PROVE [DISJ1_TAC THEN RES_TAC,DISJ2_TAC THEN RES_TAC, DISJ2_TAC THEN DISJ1_TAC THEN RES_TAC] ORELSE ASM_REWRITE_TAC [SUBF_REFL])))
val SUBF_DISJ = save_thm("SUBF_DISJ",prove(``!f g h. (f \/ g) SUBF h ==> f SUBF h /\ g SUBF h``,
Induct_on `h` THEN REPEAT CONJ_TAC THEN FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def]@tsimps_mu)
THEN REPEAT STRIP_TAC THEN (FIRST_PROVE [DISJ1_TAC THEN RES_TAC,DISJ2_TAC THEN RES_TAC, DISJ2_TAC THEN DISJ1_TAC THEN RES_TAC] ORELSE ASM_REWRITE_TAC [SUBF_REFL])))
val SUBF_DMD = save_thm("SUBF_DMD",prove(``!a f h. <<a>> f SUBF h ==> f SUBF h``,
Induct_on `h` THEN REPEAT CONJ_TAC THEN FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def]@tsimps_mu)
THEN REPEAT STRIP_TAC THEN (FIRST_PROVE [DISJ1_TAC THEN RES_TAC,DISJ2_TAC THEN RES_TAC, DISJ2_TAC THEN DISJ1_TAC THEN RES_TAC] ORELSE ASM_REWRITE_TAC [SUBF_REFL])))
val SUBF_BOX = save_thm("SUBF_BOX",prove(``!a f h. [[a]] f SUBF h ==> f SUBF h``,
Induct_on `h` THEN REPEAT CONJ_TAC THEN FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def]@tsimps_mu)
THEN REPEAT STRIP_TAC THEN (FIRST_PROVE [DISJ1_TAC THEN RES_TAC,DISJ2_TAC THEN RES_TAC, DISJ2_TAC THEN DISJ1_TAC THEN RES_TAC] ORELSE ASM_REWRITE_TAC [SUBF_REFL])))
val SUBF_MU = save_thm("SUBF_MU",prove(``!Q f h. (mu Q .. f) SUBF h ==> f SUBF h``,
Induct_on `h` THEN REPEAT CONJ_TAC THEN FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def]@tsimps_mu)
THEN REPEAT STRIP_TAC THEN (FIRST_PROVE [DISJ1_TAC THEN RES_TAC,DISJ2_TAC THEN RES_TAC, DISJ2_TAC THEN DISJ1_TAC THEN RES_TAC] ORELSE ASM_REWRITE_TAC [SUBF_REFL])))
val SUBF_NU = save_thm("SUBF_NU",prove(``!Q f h. (nu Q .. f) SUBF h ==> f SUBF h``,
Induct_on `h` THEN REPEAT CONJ_TAC THEN FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def]@tsimps_mu)
THEN REPEAT STRIP_TAC THEN (FIRST_PROVE [DISJ1_TAC THEN RES_TAC,DISJ2_TAC THEN RES_TAC, DISJ2_TAC THEN DISJ1_TAC THEN RES_TAC] ORELSE ASM_REWRITE_TAC [SUBF_REFL])))
val SUB_RV_BOX = save_thm("SUB_RV_BOX",prove(``!f a Q. ~SUBFORMULA (~RV Q) ([[a]] f) = ~SUBFORMULA (~RV Q) f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)));
val SUB_RV_MU = save_thm("SUB_RV_MU",prove(``!f Q Q'. ~SUBFORMULA (~RV Q') (mu Q .. f) = ~SUBFORMULA (~RV Q') f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)));
val SUB_RV_NU = save_thm("SUB_RV_NU",prove(``!f Q Q'. ~SUBFORMULA (~RV Q') (nu Q .. f) = ~SUBFORMULA (~RV Q') f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)));
val SUB_AP_RVNEG = save_thm("SUB_AP_RVNEG",prove(``!f p Q . SUBFORMULA (AP p) f = SUBFORMULA (AP p) (RVNEG Q ~f)``,
Induct_on `f` THEN FULL_SIMP_TAC std_ss (RVNEG_def::MU_SUB_def::tsimps_mu)
THEN REPEAT GEN_TAC THEN (TRY EQ_TAC) THEN RW_TAC std_ss []
THEN FULL_SIMP_TAC std_ss (RVNEG_def::MU_SUB_def::tsimps_mu) THEN ASSUM_LIST PROVE_TAC));
val SUB_AP_NEG_MU = save_thm("SUB_AP_NEG_MU",prove(``!f p Q . SUBFORMULA (AP p) ~(mu Q.. f) = SUBFORMULA (AP p) (RVNEG Q ~f)``,
Induct_on `f` THEN FULL_SIMP_TAC std_ss ([SUB_AP_RVNEG,NNF_def,RVNEG_def,MU_SUB_def]@tsimps_mu)
THEN REPEAT GEN_TAC THEN (TRY EQ_TAC) THEN RW_TAC std_ss []
THEN FULL_SIMP_TAC std_ss (RVNEG_def::MU_SUB_def::tsimps_mu) THEN ASSUM_LIST PROVE_TAC
));
val SUB_AP_NEG_NU = save_thm("SUB_AP_NEG_NU",prove(``!f p Q . SUBFORMULA (AP p) ~(nu Q.. f) = SUBFORMULA (AP p) (RVNEG Q ~f)``,
Induct_on `f` THEN FULL_SIMP_TAC std_ss ([SUB_AP_RVNEG,NNF_def,RVNEG_def,MU_SUB_def]@tsimps_mu)
THEN REPEAT GEN_TAC THEN (TRY EQ_TAC) THEN RW_TAC std_ss []
THEN FULL_SIMP_TAC std_ss (RVNEG_def::MU_SUB_def::tsimps_mu) THEN ASSUM_LIST PROVE_TAC
));
val SUB_AP_NEG = save_thm("SUB_AP_NEG",prove(``!f p. SUBFORMULA (AP p) (~f) = SUBFORMULA (AP p) f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_AP_CONJ = save_thm("SUB_AP_CONJ",prove(``!f g p. SUBFORMULA (AP p) (f /\ g) = SUBFORMULA (AP p) f \/ SUBFORMULA (AP p) g``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_AP_DISJ = save_thm("SUB_AP_DISJ",prove(``!f g p. SUBFORMULA (AP p) (f \/ g) = SUBFORMULA (AP p) f \/ SUBFORMULA (AP p) g``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_AP_BOX = save_thm("SUB_AP_BOX",prove(``!f p a. SUBFORMULA (AP p) ([[a]]f) = SUBFORMULA (AP p) f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_AP_DMD = save_thm("SUB_AP_DMD",prove(``!f p a. SUBFORMULA (AP p) (<<a>>f) = SUBFORMULA (AP p) f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_AP_MU = save_thm("SUB_AP_MU",prove(``!f p Q. SUBFORMULA (AP p) (mu Q .. f) = SUBFORMULA (AP p) f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_AP_NU = save_thm("SUB_AP_NU",prove(``!f p Q. SUBFORMULA (AP p) (nu Q .. f) = SUBFORMULA (AP p) f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val NNF_NEG = save_thm("NNF_NEG",prove (``!f. IMF f ==> !g. SUBFORMULA (~g) (NNF f) ==> (?p. (g = AP p) \/ ?Q. (g = RV Q))``,
recInduct NNF_IND_def THEN REPEAT CONJ_TAC THEN BETA_TAC
THEN REPEAT (RW_TAC std_ss ([IMF_def,MU_SUB_def,NNF_def,RVNEG_def,IMF_INV_RVNEG]@tsimps_mu))))
val SUB_DMD_NEG = save_thm("SUB_DMD_NEG",prove(``!f g a. ~SUBFORMULA (<<a>> g) (~f) = ~SUBFORMULA (<<a>> g) f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_DMD_CONJ = save_thm("SUB_DMD_CONJ",prove(``!f f1 g a. ~SUBFORMULA (<<a>> g) (f /\ f1) = (~SUBFORMULA (<<a>> g) f) /\ (~SUBFORMULA (<<a>> g) f1)``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_DMD_DISJ = save_thm("SUB_DMD_DISJ",prove(``!f f1 g a. ~SUBFORMULA (<<a>> g) (f \/ f1) = (~SUBFORMULA (<<a>> g) f) /\ (~SUBFORMULA (<<a>> g) f1)``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_DMD_DMD = save_thm("SUB_DMD_DMD",prove (``!f a. ~(!a' g . ~SUBFORMULA <<a'>> g <<a>> f)``,SIMP_TAC std_ss [] THEN REPEAT GEN_TAC THEN MAP_EVERY Q.EXISTS_TAC [`a`,`f`] THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_DMD_BOX = save_thm("SUB_DMD_BOX",prove(``!f g a a'. ~SUBFORMULA (<<a>> g) ([[a']]f) = ~SUBFORMULA (<<a>> g) f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_DMD_MU = save_thm("SUB_DMD_MU",prove(``!f g a Q. ~SUBFORMULA (<<a>> g) (mu Q .. f) = ~SUBFORMULA (<<a>> g) f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_DMD_NU = save_thm("SUB_DMD_NU",prove(``!f g a Q. ~SUBFORMULA (<<a>> g) (nu Q .. f) = ~SUBFORMULA (<<a>> g) f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_AP_NEG_CONJ = save_thm("SUB_AP_NEG_CONJ",prove(``!f g p. SUBFORMULA (AP p) ~(f /\ g) = SUBFORMULA (AP p) ~f \/ SUBFORMULA (AP p) ~g``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_AP_NEG_DISJ = save_thm("SUB_AP_NEG_DISJ",prove(``!f g p. SUBFORMULA (AP p) ~(f \/ g) = SUBFORMULA (AP p) ~f \/ SUBFORMULA (AP p) ~g``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_AP_NEG_DMD = save_thm("SUB_AP_NEG_DMD",prove(``!f p a. SUBFORMULA (AP p) ~(<<a>>f) = SUBFORMULA (AP p) ~f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_AP_NEG_NEG = save_thm("SUB_AP_NEG_NEG",prove(``!f p. SUBFORMULA (AP p) (~~f) = SUBFORMULA (AP p) f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_DMD_NEG_CONJ = save_thm("SUB_DMD_NEG_CONJ",prove(``!f f1 g a. ~SUBFORMULA (<<a>> g) ~(f /\ f1) = (~SUBFORMULA (<<a>> g) ~f) /\ (~SUBFORMULA (<<a>> g) ~f1)``,Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_DMD_NEG_DISJ = save_thm("SUB_DMD_NEG_DISJ",prove(``!f f1 g a. ~SUBFORMULA (<<a>> g) ~(f \/ f1) = (~SUBFORMULA (<<a>> g) ~f) /\ (~SUBFORMULA (<<a>> g) ~f1)``,Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_DMD_NEG_DMD = save_thm("SUB_DMD_NEG_DMD",prove(``!f a. (!a' g. ~SUBFORMULA (<<a'>> g) ~(<<a>>f)) ==> !a' g. ~SUBFORMULA (<<a'>> g) ~f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val SUB_DMD_NEG_NEG = save_thm("SUB_DMD_NEG_NEG",prove(``!f g a. ~SUBFORMULA (<<a>> g) (~~f) = ~SUBFORMULA (<<a>> g) f``,
Induct_on `f` THEN SIMP_TAC std_ss (MU_SUB_def::tsimps_mu)))
val STATES_MONO_LEM3 = save_thm("STATES_MONO_LEM3",prove(``!(f:'prop mu) Q. ~SUBFORMULA (~RV Q) (NNF f) = ~SUBFORMULA (~RV Q) (NNF (RVNEG Q ~f))``,
recInduct NNF_IND_def THEN REPEAT CONJ_TAC THEN BETA_TAC THEN SIMP_TAC std_ss ([NNF_def,MU_SUB_def,RVNEG_def]@tsimps_mu) THENL [
REPEAT GEN_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss [MU_SUB_def,NNF_def]
THEN FULL_SIMP_TAC std_ss tsimps_mu,
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def]@ tsimps_mu)], (* RV *)
REPEAT STRIP_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@ tsimps_mu),
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@ tsimps_mu)
THEN FULL_SIMP_TAC std_ss [SIMP_RULE std_ss [RVNEG_def] (SPECL[``~RVNEG Q' (f:'prop mu)``,``Q:string``,``Q':string``]
STATES_MONO_LEM2)]], (* mu *)
REPEAT STRIP_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@ tsimps_mu),
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@ tsimps_mu)
THEN FULL_SIMP_TAC std_ss [SIMP_RULE std_ss [RVNEG_def] (SPECL[``~RVNEG Q' (f:'prop mu)``,``Q:string``,``Q':string``]
STATES_MONO_LEM2)]], (* nu *)
REPEAT GEN_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss [MU_SUB_def,NNF_def]
THEN FULL_SIMP_TAC std_ss tsimps_mu,
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def]@ tsimps_mu)], (* ~RV *)
REPEAT STRIP_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss ([NNF_RVNEG_DUALITY,MU_SUB_def,NNF_def,RVNEG_def]@ tsimps_mu),
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@ tsimps_mu)
THEN SIMP_TAC std_ss [RVNEG_SYM]
THEN PROVE_TAC [SIMP_RULE std_ss [RVNEG_def] (SPECL[``RVNEG Q' (f:'prop mu)``,``Q:string``,``Q':string``]
STATES_MONO_LEM2)]], (* ~mu *)
REPEAT STRIP_TAC THEN Cases_on `Q'=Q` THENL [
FULL_SIMP_TAC std_ss ([NNF_RVNEG_DUALITY,MU_SUB_def,NNF_def,RVNEG_def]@ tsimps_mu),
FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def,RVNEG_def]@ tsimps_mu)
THEN SIMP_TAC std_ss [RVNEG_SYM]
THEN PROVE_TAC [SIMP_RULE std_ss [RVNEG_def] (SPECL[``RVNEG Q' (f:'prop mu)``,``Q:string``,``Q':string``]
STATES_MONO_LEM2)]]])) (* ~nu *)
val STATES_MONO_LEM6 = save_thm("STATES_MONO_LEM6",prove (``!Q Q' (f:'prop mu). SUBFORMULA (~RV Q') (NNF mu Q.. f) = SUBFORMULA (~RV Q') (NNF f)``,FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def]@ tsimps_mu)))
val STATES_MONO_LEM11 = save_thm("STATES_MONO_LEM11",prove(``!Q Q' (f:'prop mu). SUBFORMULA (~RV Q') (NNF nu Q.. f) = SUBFORMULA (~RV Q') (NNF f)``,FULL_SIMP_TAC std_ss ([MU_SUB_def,NNF_def]@ tsimps_mu)))
val STATES_MONO_LEM8 = save_thm("STATES_MONO_LEM8",prove(``!Q. ~SUBFORMULA (~RV Q) (NNF (RV:(string -> 'prop mu) Q))``,SIMP_TAC std_ss ([MU_SUB_def,NNF_def]@tsimps_mu)))
val STATES_MONO_LEM9 = save_thm("STATES_MONO_LEM9",prove(``!Q. SUBFORMULA (~RV Q) (NNF (~(RV:(string -> 'prop mu)) Q))``,SIMP_TAC std_ss ([MU_SUB_def,NNF_def]@tsimps_mu)))
(* thms about IMF *)
val NNF_IDEM = save_thm("NNF_IDEM",prove(``!f. NNF (NNF f) = NNF f``,recInduct NNF_IND_def THEN REPEAT CONJ_TAC THEN SIMP_TAC std_ss (NNF_def::MU_SUB_def::tsimps_mu) THEN ASSUM_LIST (fn l => TRY (PROVE_TAC l))))
val IMF_NNF = save_thm("IMF_NNF",prove(``!f. IMF f = IMF (NNF f)``,
recInduct NNF_IND_def THEN REPEAT CONJ_TAC THEN SIMP_TAC std_ss (NNF_IDEM::IMF_def::MU_SUB_def::NNF_def::tsimps_mu) THEN
RW_TAC std_ss [] THEN PROVE_TAC [STATES_MONO_LEM3,IMF_INV_NEG_RVNEG]))
val IMF_MU_NNF = save_thm("IMF_MU_NNF",prove(``!f Q. IMF (mu Q .. f) = IMF (mu Q .. NNF f)``,
REWRITE_TAC [IMF_def] THEN PROVE_TAC [NNF_IDEM,IMF_NNF]))
val IMF_MU_CONJ = save_thm("IMF_MU_CONJ",prove(``!f g Q. IMF (mu Q.. f /\ g) = IMF (mu Q .. f) /\ IMF (mu Q .. g)``,SIMP_TAC std_ss [IMF_def] THEN Induct_on `f` THEN SIMP_TAC std_ss (IMF_def::MU_SUB_def::NNF_def::tsimps_mu) THEN ASSUM_LIST PROVE_TAC))
val IMF_MU_NEG_CONJ = save_thm("IMF_MU_NEG_CONJ",prove(``!f g Q. IMF (mu Q.. ~(f /\ g)) = IMF (mu Q .. ~f) /\ IMF (mu Q .. ~g)``,SIMP_TAC std_ss [IMF_def] THEN Induct_on `f` THEN SIMP_TAC std_ss (IMF_def::MU_SUB_def::NNF_def::tsimps_mu) THEN ASSUM_LIST PROVE_TAC))
val IMF_MU_DISJ = save_thm("IMF_MU_DISJ",prove(``!f g Q. IMF (mu Q.. f \/ g) = IMF (mu Q .. f) /\ IMF (mu Q .. g)``,SIMP_TAC std_ss [IMF_def] THEN Induct_on `f` THEN SIMP_TAC std_ss (IMF_def::MU_SUB_def::NNF_def::tsimps_mu) THEN ASSUM_LIST PROVE_TAC))
val IMF_MU_NEG_DISJ = save_thm("IMF_MU_NEG_DISJ",prove(``!f g Q. IMF (mu Q.. ~(f \/ g)) = IMF (mu Q .. ~f) /\ IMF (mu Q .. ~g)``,SIMP_TAC std_ss [IMF_def] THEN Induct_on `f` THEN SIMP_TAC std_ss (IMF_def::MU_SUB_def::NNF_def::tsimps_mu) THEN ASSUM_LIST PROVE_TAC))
val IMF_MU_DMD = save_thm("IMF_MU_DMD",prove(``!f a Q. IMF (mu Q.. <<a>> f ) = IMF (mu Q .. f)``,SIMP_TAC std_ss [IMF_def] THEN Induct_on `f` THEN SIMP_TAC std_ss (IMF_def::MU_SUB_def::NNF_def::tsimps_mu) THEN ASSUM_LIST PROVE_TAC))
val IMF_MU_NEG_DMD = save_thm("IMF_MU_NEG_DMD",prove(``!f a Q. IMF (mu Q.. ~<<a>> f ) = IMF (mu Q .. ~f)``,SIMP_TAC std_ss [IMF_def] THEN Induct_on `f` THEN SIMP_TAC std_ss (IMF_def::MU_SUB_def::NNF_def::tsimps_mu) THEN ASSUM_LIST PROVE_TAC))
val IMF_MU_BOX = save_thm("IMF_MU_BOX",prove(``!f a Q. IMF (mu Q.. [[a]] f) = IMF (mu Q .. f)``,SIMP_TAC std_ss [IMF_def] THEN Induct_on `f` THEN SIMP_TAC std_ss (IMF_def::MU_SUB_def::NNF_def::tsimps_mu) THEN ASSUM_LIST PROVE_TAC))
val IMF_MU_NEG_BOX = save_thm("IMF_MU_NEG_BOX",prove(``!f a Q. IMF (mu Q.. ~[[a]] f) = IMF (mu Q .. ~f)``,SIMP_TAC std_ss [IMF_def] THEN Induct_on `f` THEN SIMP_TAC std_ss (IMF_def::MU_SUB_def::NNF_def::tsimps_mu) THEN ASSUM_LIST PROVE_TAC))
val IMF_MU_MU = save_thm("IMF_MU_MU",prove(``!f Q Q'. IMF (mu Q.. mu Q' .. f) ==> IMF (mu Q' .. f)``,SIMP_TAC std_ss [IMF_def] THEN recInduct NNF_IND_def THEN REPEAT CONJ_TAC THEN SIMP_TAC std_ss (IMF_def::MU_SUB_def::NNF_def::tsimps_mu) THEN ASSUM_LIST (fn l => TRY (PROVE_TAC l))))
val IMF_MU_NEG_MU = save_thm("IMF_MU_NEG_MU",prove(``!f Q Q'. IMF (mu Q.. ~mu Q' .. f) ==> IMF (mu Q' .. f)``,SIMP_TAC std_ss [IMF_def] THEN recInduct NNF_IND_def THEN REPEAT CONJ_TAC THEN SIMP_TAC std_ss (IMF_def::MU_SUB_def::NNF_def::tsimps_mu) THEN ASSUM_LIST (fn l => TRY (PROVE_TAC l))))
val IMF_MU_NU = save_thm("IMF_MU_NU",prove(``!f Q Q'. IMF (mu Q.. nu Q' .. f) ==> IMF (mu Q' .. f)``,SIMP_TAC std_ss [IMF_def] THEN recInduct NNF_IND_def THEN REPEAT CONJ_TAC THEN SIMP_TAC std_ss (IMF_def::MU_SUB_def::NNF_def::tsimps_mu) THEN ASSUM_LIST (fn l => TRY (PROVE_TAC l))))
val IMF_MU_NEG_NU = save_thm("IMF_MU_NEG_NU",prove(``!f Q Q'. IMF (mu Q.. ~nu Q' .. f) ==> IMF (mu Q' .. f)``,SIMP_TAC std_ss [IMF_def] THEN recInduct NNF_IND_def THEN REPEAT CONJ_TAC THEN SIMP_TAC std_ss (IMF_def::MU_SUB_def::NNF_def::tsimps_mu) THEN ASSUM_LIST (fn l => TRY (PROVE_TAC l))))
val IMF_MU_NEG_NEG = save_thm("IMF_MU_NEG_NEG",prove(``!f a Q. IMF (mu Q.. ~~f) = IMF (mu Q .. f)``,SIMP_TAC std_ss [IMF_def] THEN Induct_on `f` THEN SIMP_TAC std_ss (IMF_def::MU_SUB_def::NNF_def::tsimps_mu) THEN ASSUM_LIST PROVE_TAC))
val IMF_MU_INV_RVNEG = save_thm("IMF_MU_INV_RVNEG",prove(``!f Q. IMF (mu Q.. f) = IMF mu Q.. RVNEG Q ~f``, REWRITE_TAC [IMF_def] THEN PROVE_TAC[STATES_MONO_LEM3,IMF_INV_NEG_RVNEG]))
val IMF_MU_EXT = save_thm("IMF_MU_EXT",prove(``!f. IMF f ==> ?Q. IMF (mu Q..f)``,
REPEAT STRIP_TAC
THEN FULL_SIMP_TAC std_ss [IMF_def]
THEN Q.EXISTS_TAC `@Q. ~(Q IN ALLV (NNF f))`
THEN SELECT_ELIM_TAC
THEN CONJ_TAC THENL [
POP_ASSUM (K ALL_TAC)
THEN REWRITE_TAC [GSYM ALLV_NNF]
THEN METIS_TAC [NOT_IN_FIN_STRING_SET,ALLV_FINITE],
REPEAT STRIP_TAC
THEN IMP_RES_TAC SUBF_NEG2
THEN METIS_TAC [ALLV_SUBF,ALLV_NNF]
]))
val _ = export_theory()