-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathgenericGraphScript.sml
2883 lines (2565 loc) · 93.5 KB
/
genericGraphScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
open HolKernel Parse boolLib bossLib;
open pred_setTheory pairTheory bagTheory liftingTheory transferTheory
transferLib liftLib
(* Material on finite simple graphs mechanised from
"Combinatorics and Graph Theory" by Harris, Hirst, and Mossinghoff
*)
val _ = new_theory "genericGraph";
Datatype: diredge = directed ((α+num) set) ((α+num) set) 'label
End
Datatype: undiredge = undirected ((α+num) set) 'label
End
Datatype:
core_edge = cDE (('a,'l) diredge) | cUDE (('a,'l) undiredge)
End
Overload DE = “λm n l. cDE (directed m n l)”
Overload UDE = “λns l. cUDE (undirected ns l)”
Theorem FORALL_DIREDGE:
(∀de. P de) ⇔ ∀ms ns lab. P (directed ms ns lab)
Proof
simp[EQ_IMP_THM] >> strip_tac >> Cases >> simp[]
QED
Theorem EXISTS_UNDIREDGE:
(∃ud:('a,'l)undiredge. P ud) ⇔ ∃ns l. P (undirected ns l)
Proof
iff_tac >> rw[] >> simp[SF SFY_ss] >>
Cases_on ‘ud’>> metis_tac[]
QED
Theorem core_edge_cases:
∀e. (∃m n l. e = DE m n l) ∨ (∃ns l. e = UDE ns l)
Proof
Cases >> simp[] >>
metis_tac[TypeBase.nchotomy_of “:('a,'l) diredge”,
TypeBase.nchotomy_of “:('a,'l) undiredge”]
QED
val _ = TypeBase.export [
TypeBasePure.put_nchotomy core_edge_cases
(valOf (TypeBase.read {Tyop = "core_edge",
Thy = "genericGraph"}))
];
Definition is_directed_edge_def[simp]:
is_directed_edge (cDE _ ) = T ∧
is_directed_edge (cUDE _ ) = F
End
Definition denodes_def[simp]:
denodes (directed m n l) = (m,n)
End
Definition udenodes_def[simp]:
udenodes (undirected ns l) = ns
End
Definition enodes_def[simp]:
enodes (cDE de) = INL (denodes de) ∧
enodes (cUDE he) = INR (udenodes he)
End
Theorem enodesEQ:
(enodes e = INL (m,n) ⇔ ∃l. e = DE m n l) ∧
(enodes e = INR ns ⇔ ∃l. e = UDE ns l)
Proof
Cases_on ‘e’ >> simp[]
QED
Theorem SING_EQ2[simp]:
{x} = {a;b} ⇔ x = a ∧ a = b
Proof
simp[EXTENSION] >> metis_tac[]
QED
Theorem CARDEQ2:
FINITE s ⇒ (CARD s = 2 ⇔ ∃a b. a ≠ b ∧ s = {a;b})
Proof
strip_tac >> simp[EQ_IMP_THM, PULL_EXISTS] >>
Cases_on ‘s’ >> gs[] >> rename [‘a ∉ s’] >>
Cases_on ‘s’ >> gs[] >> metis_tac[]
QED
Theorem INSERT2_lemma:
{a;b} = {m;n} ⇔ a = b ∧ m = n ∧ a = m ∨
a = m ∧ b = n ∨
a = n ∧ b = m
Proof
simp[EXTENSION] >> metis_tac[]
QED
Theorem GSPEC_lemma:
(GSPEC (λx. (y, P)) = if P then {y} else {}) ∧
(GSPEC (λx. (f x, x = e ∧ P)) = if P then {f e} else {})
Proof
rw[EXTENSION]
QED
Definition incidentDE_def[simp]:
incidentDE (directed n1 n2 lab) = n1 ∪ n2
End
Overload incident = “udenodes”
Overload incident = “incidentDE”
Definition core_incident_def[simp]:
core_incident (cDE de) = incident de ∧
core_incident (cUDE he) = incident he
End
Definition selfloop_def[simp]:
selfloop (directed m n lab) ⇔ ¬(DISJOINT m n)
End
Definition gen_selfloop_def[simp]:
gen_selfloop (cDE de) = selfloop de ∧
gen_selfloop (cUDE he) = SING (udenodes he)
End
Definition dirflip_edge_def[simp]:
dirflip_edge (directed m n l) = directed n m l
End
Theorem dirflip_edge_inverts[simp]:
dirflip_edge (dirflip_edge de) = de
Proof
Cases_on ‘de’ >> simp[]
QED
Theorem dirflip_edge_11[simp]:
dirflip_edge de1 = dirflip_edge de2 ⇔ de1 = de2
Proof
map_every Cases_on [‘de1’, ‘de2’] >> simp[] >> metis_tac[]
QED
Definition flip_edge_def[simp]:
flip_edge (cDE de) = cDE (dirflip_edge de) ∧
flip_edge (cUDE he) = cUDE he
End
Theorem flip_edge_inverts[simp]:
flip_edge (flip_edge e) = e
Proof
Cases_on ‘e’ >> simp[]
QED
Theorem flip_edge_11[simp]:
flip_edge e1 = flip_edge e2 ⇔ e1 = e2
Proof
map_every Cases_on [‘e1’, ‘e2’] >> simp[] >> metis_tac[]
QED
Theorem dirflip_edge_EQ[simp]:
(dirflip_edge de = directed a b l ⇔ de = directed b a l) ∧
(directed a b l = dirflip_edge de ⇔ de = directed b a l)
Proof
Cases_on ‘de’ >> simp[] >> metis_tac[]
QED
Theorem flip_edge_EQ[simp]:
(flip_edge e = DE a b lab ⇔ e = DE b a lab) ∧
(DE a b lab = flip_edge e ⇔ e = DE b a lab) ∧
(flip_edge e = UDE ns lab ⇔ e = UDE ns lab) ∧
(UDE ns lab = flip_edge e ⇔ e = UDE ns lab)
Proof
Cases_on ‘e’ >> simp[] >> metis_tac[]
QED
Theorem incident_dirflip_edge[simp]:
incident (dirflip_edge de) = incident de
Proof
Cases_on ‘de’ >> simp[UNION_COMM]
QED
Theorem incident_flip_edge[simp]:
core_incident (flip_edge e) = core_incident e
Proof
Cases_on ‘e’ >> simp[INSERT2_lemma, AC UNION_COMM UNION_ASSOC]
QED
Definition udedge_label_def[simp]:
udedge_label (undirected ns l) = l
End
Definition dedge_label_def[simp]:
dedge_label (directed m n l) = l
End
Theorem dedge_label_dirflip_edge[simp]:
dedge_label (dirflip_edge de) = dedge_label de
Proof
Cases_on ‘de’ >> simp[]
QED
Definition edge_label_def[simp]:
edge_label (cDE de) = dedge_label de ∧
edge_label (cUDE he) = udedge_label he
End
Theorem edge_label_flip_edge[simp]:
∀e. edge_label (flip_edge e) = edge_label e
Proof
Cases>> simp[]
QED
Definition finite_cst_def:
finite_cst cs A ⇔ (FINITE cs ⇒ FINITE A)
End
Overload set = “SET_OF_BAG”
Definition itself2set_def[simp]:
itself2set (:'a) = univ(:'a)
End
Definition itself2bool_def:
itself2bool x ⇔ FINITE $ itself2set x
End
Definition itself2boolopt_def:
itself2boolopt x =
let A = itself2set x
in
if FINITE A then
if CARD A = 1 then SOME F
else SOME T
else NONE
End
Definition itself2_4_def:
itself2_4 x =
let A = itself2set x
in
if FINITE A then
if CARD A = 1 then (F,F)
else if CARD A = 2 then (F,T)
else (T,F)
else (T,T)
End
Datatype:
edge_cst_vals = ONE_EDGE | ONE_EDGE_PERLABEL | FINITE_EDGES | UNC_EDGES
End
Definition itself2_ecv_def:
itself2_ecv x =
case itself2_4 x of
| (F,F) => ONE_EDGE
| (F,T) => ONE_EDGE_PERLABEL
| (T,F) => FINITE_EDGES
| (T,T) => UNC_EDGES
End
(* constraining edge set sizes between any given set of nodes (possibly
singleton if selfloops allowed; possibly with size > 2 if hypergraph)
options are:
- only one (F,F)
- only one per label (F,T)
- finite (T,F)
- unconstrained (T,T)
(Necessarily infinitely many edges between any two nodes seems dumb.)
*)
Definition only_one_edge_def:
only_one_edge (ebag : ('a,'l) core_edge bag) ⇔
∀A e. e ∈ set ebag ∧ enodes e = A ⇒
ebag e = 1 ∧
(∀f. f ∈ set ebag ∧ enodes f = A ⇒ f = e)
End
Definition only_one_edge_per_label_def:
only_one_edge_per_label (ebag : ('a,'l) core_edge bag) ⇔
∀e. e ∈ set ebag ⇒ ebag e = 1
End
Definition finite_edges_per_nodeset_def:
finite_edges_per_nodeset (ebag : ('a,'l) core_edge bag) ⇔
∀A. FINITE { e | e ∈ set ebag ∧ core_incident e = A }
End
Definition dirhypcst_def:
dirhypcst dirp hypp slp ebag ⇔
case (itself2bool dirp, itself2bool hypp, itself2bool slp) of
| (F, F, F) => (∀e. e ∈ set ebag ⇒ ∃m n l. e = UDE {m;n} l ∧ m ≠ n)
| (F, F, T) => (∀e. e ∈ set ebag ⇒ ∃m n l. e = UDE {m;n} l)
| (F, T, F) => (∀e. e ∈ set ebag ⇒
∃ns l. e = UDE ns l ∧ (FINITE ns ⇒ 2 ≤ CARD ns))
| (F, T, T) => (∀e. e ∈ set ebag ⇒ ∃ns l. e = UDE ns l ∧ ns ≠ ∅)
| (T, F, F) => (∀e. e ∈ set ebag ⇒ ∃m n l. e = DE {m} {n} l ∧ m ≠ n)
| (T, F, T) => (∀e. e ∈ set ebag ⇒ ∃m n l. e = DE {m} {n} l)
| (T, T, F) => (∀e. e ∈ set ebag ⇒
∃ms ns l. e = DE ms ns l ∧ DISJOINT ms ns ∧
ms ≠ ∅ ∧ ns ≠ ∅)
| (T, T, T) => (∀e. e ∈ set ebag ⇒
∃ms ns l. e = DE ms ns l ∧ ms ≠ ∅ ∧ ns ≠ ∅)
End
Definition edge_cst_def:
edge_cst ecst ebag ⇔
(case itself2_ecv ecst of
| ONE_EDGE => only_one_edge ebag
| ONE_EDGE_PERLABEL => only_one_edge_per_label ebag
| FINITE_EDGES => finite_edges_per_nodeset ebag
| UNC_EDGES => T)
End
val SL_OK_tydefrec = newtypeTools.rich_new_type
{tyname = "SL_OK",
exthm = prove(“∃x:unit. (λx. T) x”, simp[]),
ABS = "SL_OK_ABS",
REP = "SL_OK_REP"};
val noSL_tydefrec = newtypeTools.rich_new_type
{tyname = "noSL",
exthm = prove(“∃x:num. (λx. T) x”, simp[]),
ABS = "noSL_ABS",
REP = "noSL_REP"};
val INF_OK_tydefrec = newtypeTools.rich_new_type
{tyname = "INF_OK",
exthm = prove(“∃x:num. (λx. T) x”, simp[]),
ABS = "INF_OK_ABS",
REP = "INF_OK_REP"};
val finiteG_tydefrec = newtypeTools.rich_new_type
{tyname = "finiteG",
exthm = prove(“∃x:unit. (λx. T) x”, simp[]),
ABS = "finiteG_ABS",
REP = "finiteG_REP"};
val undirectedG_tydefrec = newtypeTools.rich_new_type
{tyname = "undirectedG",
exthm = prove(“∃x:num. (λx. T) x”, simp[]),
ABS = "undirectedG_ABS",
REP = "undirectedG_REP"};
val unhyperG_tydefrec = newtypeTools.rich_new_type
{tyname = "unhyperG",
exthm = prove(“∃x:num. (λx. T) x”, simp[]),
ABS = "unhyperG_ABS",
REP = "unhyperG_REP"};
val directedG_tydefrec = newtypeTools.rich_new_type
{tyname = "directedG",
exthm = prove(“∃x:unit. (λx. T) x”, simp[]),
ABS = "directedG_ABS",
REP = "directedG_REP"};
val hyperG_tydefrec = newtypeTools.rich_new_type
{tyname = "hyperG",
exthm = prove(“∃x:unit. (λx. T) x”, simp[]),
ABS = "hyperG_ABS",
REP = "hyperG_REP"};
val allEdgesOK_tydefrec = newtypeTools.rich_new_type
{tyname = "allEdgesOK",
exthm = prove(“∃x:num. (λx. T) x”, simp[]),
ABS = "allEdgesOK_ABS",
REP = "allEdgesOK_REP"};
val finiteEdges_tydefrec = newtypeTools.rich_new_type
{tyname = "finiteEdges",
exthm = prove(“∃x:bool option. (λx. T) x”, simp[]),
ABS = "finiteEdges_ABS",
REP = "finiteEdges_REP"};
val oneEdge_tydefrec = newtypeTools.rich_new_type
{tyname = "oneedgeG",
exthm = prove(“∃x:unit. (λx. T) x”, simp[]),
ABS = "oneedgeG_ABS",
REP = "oneedgeG_REP"};
val oneedgeplG_tydefrec = newtypeTools.rich_new_type
{tyname = "oneedgeplG",
exthm = prove(“∃x:bool. (λx. T) x”, simp[]),
ABS = "oneedgeplG_ABS",
REP = "oneedgeplG_REP"};
Theorem UNIV_UNIT[simp]:
UNIV : unit set = {()}
Proof
simp[EXTENSION]
QED
Theorem UNIV_oneedgeG[simp]:
univ(:oneedgeG) = {oneedgeG_ABS ()}
Proof
simp[EXTENSION, SYM $ #term_REP_11 oneEdge_tydefrec]
QED
Theorem UNIV_oneedgeplG[simp]:
univ(:oneedgeplG) = {oneedgeplG_ABS F; oneedgeplG_ABS T}
Proof
simp[EXTENSION, SYM $ #term_REP_11 oneedgeplG_tydefrec,
#repabs_pseudo_id oneedgeplG_tydefrec]
QED
Theorem itself2_ecv_oneedgeG[simp]:
itself2_ecv (:oneedgeG) = ONE_EDGE
Proof
simp[itself2_ecv_def, itself2_4_def]
QED
Theorem itself2_ecv_oneedgeplG[simp]:
itself2_ecv (:oneedgeplG) = ONE_EDGE_PERLABEL
Proof
simp[itself2_ecv_def, itself2_4_def, #term_ABS_pseudo11 oneedgeplG_tydefrec]
QED
Theorem UNIV_SL_OK[simp]:
UNIV : SL_OK set = {SL_OK_ABS ()}
Proof
simp[EXTENSION, SYM $ #term_REP_11 SL_OK_tydefrec]
QED
Theorem itself2bool_SL_OK[simp]:
itself2bool (:SL_OK) = T
Proof
simp[itself2bool_def]
QED
Theorem UNIV_finiteG[simp]:
univ(:finiteG) = {finiteG_ABS ()}
Proof
simp[EXTENSION, SYM $ #term_REP_11 finiteG_tydefrec]
QED
Theorem itself2bool_finiteG[simp]:
itself2bool (:finiteG) = T
Proof
simp[itself2bool_def]
QED
Theorem UNIV_directedG[simp]:
univ(:directedG) = {directedG_ABS ()}
Proof
simp[EXTENSION, SYM $ #term_REP_11 directedG_tydefrec]
QED
Theorem itself2bool_directedG[simp]:
itself2bool (:directedG) = T
Proof
simp[itself2bool_def]
QED
Theorem itself2bool_noSL[simp]:
itself2bool (:noSL) = F
Proof
simp[itself2bool_def] >>
simp[infinite_num_inj] >> qexists ‘noSL_ABS’ >>
simp[INJ_IFF, #term_ABS_pseudo11 noSL_tydefrec]
QED
Theorem UNIV_finiteEdges[simp]:
univ(:finiteEdges) = {finiteEdges_ABS (SOME F); finiteEdges_ABS (SOME T);
finiteEdges_ABS NONE}
Proof
simp[EXTENSION, SYM $ #term_REP_11 finiteEdges_tydefrec,
#repabs_pseudo_id finiteEdges_tydefrec
] >> qx_gen_tac ‘e’ >> Cases_on ‘finiteEdges_REP e’ >> simp[]
QED
Theorem itself2_ecv_finiteEdges[simp]:
itself2_ecv (:finiteEdges) = FINITE_EDGES
Proof
simp[itself2_ecv_def, itself2_4_def,
AllCaseEqs(), #term_ABS_pseudo11 finiteEdges_tydefrec]
QED
Theorem itself2bool_undirectedG[simp]:
itself2bool (:undirectedG) = F
Proof
simp[itself2bool_def, AllCaseEqs(), infinite_num_inj] >>
qexists ‘undirectedG_ABS’ >>
simp[INJ_IFF, #term_ABS_pseudo11 undirectedG_tydefrec]
QED
Theorem itself2bool_unhyperG[simp]:
itself2bool (:unhyperG) = F
Proof
simp[itself2bool_def, AllCaseEqs(), infinite_num_inj] >>
qexists ‘unhyperG_ABS’ >>
simp[INJ_IFF, #term_ABS_pseudo11 unhyperG_tydefrec]
QED
Theorem UNIV_hyperG[simp]:
univ(:hyperG) = {hyperG_ABS ()}
Proof
simp[EXTENSION, SYM $ #term_REP_11 hyperG_tydefrec]
QED
Theorem itself2bool_hyperG[simp]:
itself2bool (:hyperG) = T
Proof
simp[itself2bool_def]
QED
Theorem INFINITE_UINF_OK[simp]:
INFINITE univ(:INF_OK)
Proof
simp[infinite_num_inj] >> qexists ‘INF_OK_ABS’ >>
simp[INJ_IFF, #term_ABS_pseudo11 INF_OK_tydefrec]
QED
Theorem itself2_4_allEdgesOK[simp]:
itself2_ecv (:allEdgesOK) = UNC_EDGES
Proof
simp[itself2_ecv_def, itself2_4_def, AllCaseEqs(), infinite_num_inj] >>
qexists ‘allEdgesOK_ABS’ >>
simp[INJ_IFF, #term_ABS_pseudo11 allEdgesOK_tydefrec]
QED
Theorem itself2bool_INF_OK[simp]:
itself2bool (:INF_OK) = F
Proof
simp[itself2bool_def]
QED
Theorem itself2bool_num[simp]:
itself2bool (:num) = F
Proof
simp[itself2bool_def]
QED
Theorem itself2bool_bool[simp]:
itself2bool (:bool) = T
Proof
simp[itself2bool_def]
QED
Theorem itself2bool_unit[simp]:
itself2bool (:unit) = T
Proof
simp[itself2bool_def]
QED
Theorem itself2_ecv_unit[simp]:
itself2_ecv (:unit) = ONE_EDGE
Proof
simp[itself2_ecv_def, itself2_4_def]
QED
(* generic graphs
*)
Datatype:
graphrep = <| nodes : ('a+num) set ;
(* useful to have countable space to expand into *)
edges : ('a,'el) core_edge bag ;
hyperp : 'hyperp itself;
nlab : 'a+num -> 'nl ;
nfincst : 'nf itself ;
dircst : 'd itself ; (* true implies directed graph *)
slcst : 'slc itself ; (* true implies self-loops allowed *)
edgecst : 'ec itself
|>
End
Definition wfgraph_def:
wfgraph grep ⇔
(∀e. e ∈ set grep.edges ⇒ core_incident e ⊆ grep.nodes) ∧
finite_cst (itself2set grep.nfincst) grep.nodes ∧
edge_cst grep.edgecst grep.edges ∧
dirhypcst grep.dircst grep.hyperp grep.slcst grep.edges ∧
(∀n. n ∉ grep.nodes ⇒ grep.nlab n = ARB)
End
Theorem finite_cst_EMPTY[simp]:
finite_cst (itself2set (:unit)) {} ∧
finite_cst (itself2set (:bool)) {}
Proof
simp[finite_cst_def]
QED
Theorem finite_cst_UNION:
finite_cst s A ∧ FINITE B ⇒
finite_cst s (A ∪ B) ∧ finite_cst s (B ∪ A)
Proof
simp[finite_cst_def]
QED
Theorem optelim[local] = prove_case_elim_thm {
nchotomy = TypeBase.nchotomy_of ``:'a option``,
case_def = TypeBase.case_def_of ``:'a option``};
Theorem dirhypcst_EMPTY[simp]:
dirhypcst x y z EMPTY_BAG
Proof
rw[dirhypcst_def]
QED
Theorem edge_cst_EMPTY[simp]:
edge_cst w EMPTY_BAG
Proof
rw[edge_cst_def, finite_edges_per_nodeset_def, only_one_edge_per_label_def,
only_one_edge_def] >>
rename [‘itself2_ecv X’] >> Cases_on ‘itself2_ecv X’ >> simp[]
QED
Theorem finite_edges_per_nodeset_BAG_INSERT[simp]:
finite_edges_per_nodeset (BAG_INSERT e es) ⇔ finite_edges_per_nodeset es
Proof
dsimp[finite_edges_per_nodeset_def, GSPEC_OR] >> simp[GSPEC_AND]
QED
Theorem only_one_edge_per_label_BAG_INSERT:
only_one_edge_per_label (BAG_INSERT e es) ⇒ only_one_edge_per_label es
Proof
simp[only_one_edge_per_label_def, BAG_INSERT, AllCaseEqs(), DISJ_IMP_THM,
FORALL_AND_THM, SF CONJ_ss, BAG_IN, BAG_INN] >> rpt strip_tac >>
first_x_assum $ drule_then strip_assume_tac >> gvs[]
QED
Theorem only_one_edge_BAG_INSERT:
only_one_edge (BAG_INSERT e es) ⇒ only_one_edge es
Proof
REWRITE_TAC[only_one_edge_def, SET_OF_BAG_INSERT] >>
REWRITE_TAC[BAG_INSERT, IN_INSERT, RIGHT_AND_OVER_OR] >> BETA_TAC >>
rpt strip_tac >>
metis_tac[DECIDE “x + 1 = 1 ⇔ x = 0”, IN_SET_OF_BAG_NONZERO]
QED
Theorem dirhypcst_DELETE:
dirhypcst x y z es0 ∧ BAG_DELETE es0 e es ⇒ dirhypcst x y z es
Proof
rw[dirhypcst_def, BAG_DELETE]
QED
Theorem SUB_BAG_E[local]:
BAG_IN e b0 ∧ b0 ≤ b ⇒ BAG_IN e b
Proof
simp[BAG_IN, SUB_BAG]
QED
Theorem edge_cst_SUB_BAG:
edge_cst ec eb ∧ SUB_BAG eb0 eb ⇒ edge_cst ec eb0
Proof
simp[edge_cst_def] >> rw[] >> rename [‘itself2_ecv ecst’] >>
Cases_on ‘itself2_ecv ecst’ >> gvs[] >>
gvs[only_one_edge_def, only_one_edge_per_label_def,
finite_edges_per_nodeset_def] >> rw[] >~
[‘FINITE _’, ‘core_incident _ = A’]
>- (irule SUBSET_FINITE >> first_assum $ irule_at Any >>
simp[SUBSET_DEF] >> qexists ‘A’ >> gvs[BAG_IN, SUB_BAG]) >~
[‘enodes e1 = enodes e2’]
>- metis_tac[SUB_BAG_E] >>
gvs[BAG_IN, SUB_BAG_LEQ, BAG_INN] >>
rename [‘eb0 e ≥ 1’, ‘eb0 _ ≤ eb _’] >>
first_x_assum $ qspec_then ‘e’ strip_assume_tac >>
‘eb e = 1’ by simp[] >> simp[]
QED
Theorem edge_cst_DELETE:
edge_cst w es0 ∧ BAG_DELETE es0 e es ⇒ edge_cst w es
Proof
strip_tac >> irule edge_cst_SUB_BAG >> gvs[BAG_DELETE] >>
first_assum $ irule_at Any >> simp[SUB_BAG_LEQ, BAG_INSERT] >> rw[]
QED
Theorem graphs_exist[local]:
∃g. wfgraph g
Proof
qexists ‘<| nodes := {};
edges := EMPTY_BAG;
hyperp := ARB;
nlab := K ARB;
nfincst := ARB;
dircst := ARB;
slcst := ARB;
edgecst := ARB; |>’ >>
simp[wfgraph_def, finite_cst_def, itself2set_def]
QED
val tydefrec = newtypeTools.rich_new_type
{tyname = "graph",
exthm = graphs_exist,
ABS = "graph_ABS",
REP = "graph_REP"};
Definition AR_def:
AR r a ⇔ wfgraph r ∧ r = graph_REP a
End
Definition ceq_def:
ceq gr1 gr2 ⇔ gr1 = gr2 ∧ wfgraph gr1
End
Theorem wfgraph_relates[transfer_rule]:
(AR ===> (=)) wfgraph (K T)
Proof
simp[FUN_REL_def, AR_def]
QED
Theorem AReq_relates[transfer_rule]:
(AR ===> AR ===> (=)) (=) (=)
Proof
simp[AR_def, FUN_REL_def, #termP_term_REP tydefrec, #term_REP_11 tydefrec]
QED
Theorem right_unique_AR[transfer_simp]:
right_unique AR
Proof
simp[right_unique_def, AR_def, #term_REP_11 tydefrec]
QED
Theorem surj_AR[transfer_simp]:
surj AR
Proof
simp[surj_def, AR_def, #termP_term_REP tydefrec]
QED
Theorem RDOM_AR[transfer_simp]:
RDOM AR = {gr | wfgraph gr}
Proof
simp[relationTheory.RDOM_DEF, Once FUN_EQ_THM, AR_def, SF CONJ_ss,
#termP_term_REP tydefrec] >>
metis_tac[#termP_term_REP tydefrec, #repabs_pseudo_id tydefrec]
QED
Theorem Qt_graphs[liftQt]:
Qt ceq graph_ABS graph_REP AR
Proof
simp[Qt_alt, AR_def, #absrep_id tydefrec, ceq_def, #termP_term_REP tydefrec]>>
simp[SF CONJ_ss, #term_ABS_pseudo11 tydefrec] >>
simp[SF CONJ_ss, FUN_EQ_THM, AR_def, #termP_term_REP tydefrec,
CONJ_COMM] >>
simp[EQ_IMP_THM, #termP_term_REP tydefrec, #absrep_id tydefrec,
#repabs_pseudo_id tydefrec]
QED
(* any undirected (non-hyper) graph *)
Type udgraph[pp] = “:('a,undirectedG,'ec,'el,unhyperG,'nf,'nl,'sl)graph”
(* finite directed graph with labels on nodes and edges, possibility of
multiple, but finitely many edges, and with self-loops allowed *)
Type fdirgraph[pp] = “:('NodeEnum,
directedG,
finiteEdges (* finitely many edges between nodes *),
'edgelabel,
unhyperG,
finiteG (* finitely many nodes *),
'NodeLabel (* capitalised to precede 'edge *),
SL_OK (* self-loops OK *)
) graph”
Type allokdirgraph[pp] = “:('NodeEnum,
directedG,
allEdgesOK,
'edgelabel,
hyperG,
INF_OK,
'NodeLabel,
SL_OK) graph”
(* unlabelled graph *)
Type ulabgraph[pp] = “:(α,
δ (* undirected? *),
oneedgeG,
unit (* edge label *),
'h,
ν (* infinite nodes allowed? *),
unit (* node label *),
σ (* self-loops? *)) graph”
Type ulabgraphrep[local] = “:(α,δ,oneedgeG,unit,'h,ν,unit,σ) graphrep”
(* undirected+unhyper version of the same *)
Type udulgraph[pp] = “:(α, undirectedG, unhyperG, ν, σ)ulabgraph”
Type udulgraphrep[local] = “:(α,undirectedG,unhyperG, ν,σ)ulabgraphrep”
(* a relation graph; stripped such are in bijection with binary relations.
(The stripping makes a canonical, minimal choice of node set in the graph.)
*)
Type relgraph[pp] = “:(α, directedG, unhyperG, INF_OK, SL_OK) ulabgraph”
Definition emptyG0_def:
emptyG0 : (α,δ,'ec,'el,'h, ν,'nl,σ) graphrep =
<| nodes := {} ; edges := {||}; nlab := K ARB;
nfincst := (:ν); dircst := (:δ); slcst := (:σ);
edgecst := (:'ec) |>
End
Theorem emptyG0_respects:
ceq emptyG0 emptyG0
Proof
simp[ceq_def, wfgraph_def, emptyG0_def, finite_cst_def]
QED
val _ = liftdef emptyG0_respects "emptyG"
Theorem nodes_respects:
(ceq ===> (=)) graphrep_nodes graphrep_nodes
Proof
simp[ceq_def, FUN_REL_def]
QED
val _ = liftdef nodes_respects "nodes"
Theorem edges_respects:
(ceq ===> (=) ===> (=)) graphrep_edges graphrep_edges
Proof
simp[ceq_def, FUN_REL_def]
QED
val (e1,e2) = liftdef edges_respects "edgebag"
Definition edges_def:
edges (G:(α,directedG,'ec,'el,'h,ν,'nl,σ) graph) =
{de | cDE de ∈ set $ edgebag G}
End
Definition udedges_def:
udedges (G:(α,'ec,'el,'nf,'nl,'sl) udgraph) = {he | cUDE he ∈ set (edgebag G)}
End
Theorem incident_SUBSET_nodes:
∀g e n. e ∈ edges g ∧ n ∈ incident e ⇒ n ∈ nodes g
Proof
simp[edges_def] >> xfer_back_tac[] >>
rw[wfgraph_def, SUBSET_DEF] >> first_x_assum irule >>
first_assum $ irule_at Any >> simp[]
QED
Theorem incident_udedges_SUBSET_nodes:
∀g e n. e ∈ udedges g ∧ n ∈ incident e ⇒ n ∈ nodes g
Proof
simp[udedges_def] >> xfer_back_tac [] >>
rw[wfgraph_def, SUBSET_DEF, ITSELF_UNIQUE] >>
first_x_assum irule >> first_assum $ irule_at Any >> simp[]
QED
Theorem nlabelfun_respects:
(ceq ===> (=) ===> (=)) graphrep_nlab graphrep_nlab
Proof
simp[ceq_def, FUN_REL_def]
QED
val (nl1,nl2) = liftdef nlabelfun_respects "nlabelfun"
Theorem nlabelfun_EQ_ARB[simp]:
∀g n. n ∉ nodes g ⇒ nlabelfun g n = ARB
Proof
xfer_back_tac[] >> rw[wfgraph_def]
QED
Theorem nodes_empty[simp]:
nodes emptyG = ∅
Proof
xfer_back_tac[] >> simp[emptyG0_def]
QED
Theorem edgebag_empty[simp]:
edgebag emptyG = {||}
Proof
xfer_back_tac [] >> simp[emptyG0_def]
QED
Theorem edges_empty[simp]:
edges emptyG = ∅
Proof
simp[edges_def]
QED
Theorem udedges_empty[simp]:
udedges emptyG = ∅
Proof
simp[udedges_def]
QED
Theorem nlabelfun_empty[simp]:
nlabelfun emptyG = (λn. ARB)
Proof
xfer_back_tac[] >> simp[emptyG0_def, FUN_EQ_THM]
QED
Definition is_hypergraph_def[simp]:
is_hypergraph (g:(α,'d,'ecst,'el,'h,'nf,'nl,'sl) graph) ⇔
itself2bool(:'h)
End
Definition selfloops_ok_def[simp]:
selfloops_ok (G : (α,'d,'ec,'el,'h,'nf,'nl,'sl) graph) = itself2bool (:'sl)
End
Definition is_directedgraph_def[simp]:
is_directedgraph (g:(α,'d,'ecst,'el,'h,'nf,'nl,'sl) graph) ⇔
itself2bool(:'d)
End
Definition validEdge_def:
(validEdge hyp slp (cDE de) ⇔
case de of
directed m n l =>
m ≠ ∅ ∧ n ≠ ∅ ∧ (¬slp ⇒ DISJOINT m n) ∧
(¬hyp ⇒ SING m ∧ SING n)) ∧
(validEdge hyp slp (cUDE ude) ⇔
case ude of
undirected ns l =>
ns ≠ ∅ ∧ (¬slp ∧ FINITE ns ⇒ 2 ≤ CARD ns) ∧
(¬hyp ⇒ ∃m n. ns = {m;n}))
End
Theorem all_edges_valid:
BAG_IN e (edgebag g) ⇒ validEdge (is_hypergraph g) (selfloops_ok g) e
Proof
simp[] >> xfer_back_tac[] >>
simp[wfgraph_def, dirhypcst_def, ITSELF_UNIQUE] >> rw[] >>
first_x_assum drule >> dsimp[PULL_EXISTS, validEdge_def, INSERT2_lemma]
QED
Definition adjacent_def:
adjacent G m n ⇔
∃e ms ns.
e ∈ set (edgebag G) ∧
(enodes e = INL (ms,ns) ∧ m ∈ ms ∧ n ∈ ns ∨
enodes e = INR {m;n})
End
Theorem dirhypcst_directedG:
dirhypcst (:directedG) hypp slcst ebag ⇒
∀e. e ∈ set ebag ⇒ is_directed_edge e
Proof
gvs[dirhypcst_def] >> rw[] >> first_x_assum drule >>
simp[PULL_EXISTS]
QED
Theorem dirhypcst_undirectedG:
dirhypcst (:undirectedG) (:unhyperG) slcst ebag ⇒
∀e. e ∈ set ebag ⇒ ¬is_directed_edge e ∧
∃m n. core_incident e = {m;n}
Proof
simp[dirhypcst_def] >> rw[COND_EXPAND_OR] >>
first_x_assum drule >>
dsimp[PULL_EXISTS, INSERT2_lemma] >> rw[]
QED
Theorem adjacent_directed:
∀G m n.
adjacent (G : (α,directedG,'ec,'el,'h,'nf,'nl,'sl)graph) m n ⇔
∃ms ns l. directed ms ns l ∈ edges G ∧ m ∈ ms ∧ n ∈ ns
Proof
simp[adjacent_def, edges_def] >> xfer_back_tac[] >>
rw[wfgraph_def, ITSELF_UNIQUE] >>
drule_then strip_assume_tac dirhypcst_directedG >> iff_tac >> rw[] >>
gvs[IN_SET_OF_BAG, enodesEQ, SF SFY_ss]
>- (first_x_assum drule >> simp[]) >>
first_assum $ irule_at Any >> simp[]
QED
Theorem adjacent_undirected:
∀G m n.
adjacent (G : ('a,'ec,'el,'nf,'nl,'sl)udgraph) m n ⇔
∃l. undirected {m;n} l ∈ udedges G
Proof
simp[adjacent_def, udedges_def] >> xfer_back_tac[] >>
rw[wfgraph_def, ITSELF_UNIQUE] >>
drule_then strip_assume_tac dirhypcst_undirectedG >> iff_tac >> rw[] >>
gvs[IN_SET_OF_BAG, enodesEQ, SF SFY_ss]
>- (first_x_assum drule >> simp[]) >>
metis_tac[]
QED
Theorem adjacent_SYM:
adjacent (G:('a,'ec,'el,'nf,'nl,'sl)udgraph) m n ⇔ adjacent G n m
Proof
simp[adjacent_undirected] >> metis_tac[INSERT_COMM]
QED
Theorem adjacent_empty[simp]:
adjacent emptyG m n ⇔ F
Proof
simp[adjacent_def]
QED
Theorem edges_irrefl[simp]:
∀a l G. directed a a l ∉ edges (G:('a,directedG,'ec,'el,'h,'nf,'nl,noSL)graph)
Proof
simp[edges_def] >> xfer_back_tac[] >>
rw[wfgraph_def, ITSELF_UNIQUE, FORALL_PROD, dirhypcst_def] >>
strip_tac >> first_x_assum drule >> simp[SF CONJ_ss]
QED
Theorem adjacent_irrefl[simp]:
∀a G. adjacent (G:('a,'dir,'ec,'el,'h,'nf,'nl,noSL)graph) a a = F
Proof
simp[adjacent_def] >> xfer_back_tac [] >>
rw[wfgraph_def, ITSELF_UNIQUE, FORALL_PROD, dirhypcst_def] >>
rename [‘¬BAG_IN e G.edges’] >> Cases_on ‘BAG_IN e G.edges’ >> simp[] >>
first_x_assum drule >> simp[PULL_EXISTS] >> SET_TAC[]
QED
Definition addNode0_def:
addNode0 n lab grep = grep with <| nodes updated_by (λs. n INSERT s);
nlab := grep.nlab⦇n ↦ lab⦈ |>
End
Theorem addNode_respects:
((=) ===> (=) ===> ceq ===> ceq) addNode0 addNode0
Proof
simp[FUN_REL_def, ceq_def] >>
simp[wfgraph_def, addNode0_def] >>
rw[finite_cst_def, SUBSET_DEF, combinTheory.UPDATE_APPLY] >> metis_tac[]
QED
val (an1,an2) = liftdef addNode_respects "addNode"
Theorem nodes_addNode[simp]: