-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathMPlambdaScript.sml
943 lines (820 loc) · 33.4 KB
/
MPlambdaScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
open HolKernel Parse boolLib bossLib binderLib
open nomsetTheory horeductionTheory
local open stringTheory in end
fun Store_thm (n,t,tac) = store_thm(n,t,tac) before export_rewrites [n]
val _ = new_theory "MPlambda"
val _ = Hol_datatype `MPterm = Var of string
| Parameter of string
| App of MPterm => MPterm
| Abs of string => MPterm`;
val psub_def = Define`
(psub a p (Var s) = Var s) /\
(psub a p (Parameter q) = if p = q then a else Parameter q) /\
(psub a p (App t1 t2) = App (psub a p t1) (psub a p t2)) /\
(psub a p (Abs v t) = Abs v (psub a p t))
`;
val _ = export_rewrites ["psub_def"]
val params_def = Define`
(params (Var s) = {}) /\
(params (Parameter p) = {p}) /\
(params (App t1 t2) = params t1 UNION params t2) /\
(params (Abs v t) = params t)
`;
val _ = export_rewrites ["params_def"]
val vsub_def = Define`
(vsub a v (Var u) = if u = v then a else Var u) /\
(vsub a v (Parameter p) = Parameter p) /\
(vsub a v (App t1 t2) = App (vsub a v t1) (vsub a v t2)) /\
(vsub a v (Abs u t) = if u = v then Abs u t
else Abs u (vsub a v t))
`;
val _ = export_rewrites ["vsub_def"]
val allvars_def = Define`
(allvars (Parameter p) = {}) /\
(allvars (Var v) = {v}) /\
(allvars (App t1 t2) = allvars t1 UNION allvars t2) /\
(allvars (Abs v t) = v INSERT allvars t)
`;
val _= export_rewrites ["allvars_def"]
val FINITE_allvars = Store_thm(
"FINITE_allvars",
``!t. FINITE (allvars t)``,
Induct THEN SRW_TAC [][]);
Theorem vsub_14a_allvars[simp]:
v NOTIN allvars t ==> (vsub N v t = t)
Proof
Induct_on `t` THEN SRW_TAC [][]
QED
val pvsub_vsub_collapse = store_thm(
"pvsub_vsub_collapse",
``!M p v1 v2. ~(v2 IN allvars M) ==>
(vsub (Parameter p) v2 (vsub (Var v2) v1 M) =
vsub (Parameter p) v1 M)``,
Induct THEN SRW_TAC [][]);
val params_vvsub = Store_thm(
"params_vvsub",
``params (vsub (Var v1) v2 M) = params M``,
Induct_on `M` THEN SRW_TAC [][]);
val shape_lemma = store_thm(
"shape_lemma",
``!M p. ?v M'. (M = vsub (Parameter p) v M') /\ ~(p IN params M')``,
Induct THEN ASM_SIMP_TAC (srw_ss()) []THENL [
Q.X_GEN_TAC `s` THEN SRW_TAC [][] THEN
Q_TAC (NEW_TAC "z") `{s}` THEN
MAP_EVERY Q.EXISTS_TAC [`z`, `Var s`] THEN SRW_TAC [][],
Q.X_GEN_TAC `s` THEN SRW_TAC [][] THEN
Cases_on `s = p` THENL [
MAP_EVERY Q.EXISTS_TAC [`x`, `Var x`] THEN SRW_TAC [][],
MAP_EVERY Q.EXISTS_TAC [`x`, `Parameter s`] THEN SRW_TAC [][]
],
GEN_TAC THEN
`?v1 M1. (M = vsub (Parameter p) v1 M1) /\ ~(p IN params M1)`
by METIS_TAC [] THEN
`?v2 M2. (M' = vsub (Parameter p) v2 M2) /\ ~(p IN params M2)`
by METIS_TAC [] THEN
Q_TAC (NEW_TAC "z") `allvars M1 UNION allvars M2 UNION {v1;v2}` THEN
`(M = vsub (Parameter p) z (vsub (Var z) v1 M1)) /\
(M' = vsub (Parameter p) z (vsub (Var z) v2 M2))`
by METIS_TAC [pvsub_vsub_collapse] THEN
MAP_EVERY Q.EXISTS_TAC
[`z`, `App (vsub (Var z) v1 M1) (vsub (Var z) v2 M2)`] THEN
SRW_TAC [][pvsub_vsub_collapse],
Q.X_GEN_TAC `s` THEN SRW_TAC [][] THEN
FIRST_X_ASSUM (Q.SPEC_THEN `p` STRIP_ASSUME_TAC) THEN
REVERSE (Cases_on `s = v`) THEN1
(MAP_EVERY Q.EXISTS_TAC [`v`, `Abs s M'`] THEN SRW_TAC [][]) THEN
SRW_TAC [][] THEN
Q_TAC (NEW_TAC "z") `s INSERT allvars M'` THEN
MAP_EVERY Q.EXISTS_TAC [`z`, `Abs s (vsub (Var z) s M')`] THEN
SRW_TAC [][pvsub_vsub_collapse]
]);
val (vclosed_rules, vclosed_ind, vclosed_cases) = Hol_reln`
(!p. vclosed (Parameter p)) /\
(!p v t. vclosed (vsub (Parameter p) v t) ==>
vclosed (Abs v t)) /\
(!t1 t2. vclosed t1 /\ vclosed t2 ==> vclosed (App t1 t2))
`;
val FINITE_params = Store_thm(
"FINITE_params",
``!t. FINITE (params t)``,
Induct THEN SRW_TAC [][]);
val psub_14a = Store_thm(
"psub_14a",
``!M p N. ~(p IN params M) ==> (psub N p M = M)``,
Induct THEN SRW_TAC [][]);
val vsub_is_psub_alpha = store_thm(
"vsub_is_psub_alpha",
``!M p N v. ~(p IN params M) ==>
(psub N p (vsub (Parameter p) v M) = vsub N v M)``,
Induct THEN SRW_TAC [][]);
val vars_def = Define`
(vars (Var u) = {u}) /\
(vars (Parameter p) = {}) /\
(vars (App t1 t2) = vars t1 UNION vars t2) /\
(vars (Abs v t) = vars t DIFF {v})
`;
val _ = export_rewrites ["vars_def"]
val vsub_14a = Store_thm(
"vsub_14a",
``!M v N. ~(v IN vars M) ==> (vsub N v M = M)``,
Induct THEN SRW_TAC [][]);
val raw_MPpm_def = Define`
(raw_MPpm pi (Parameter s) = Parameter (lswapstr pi s)) /\
(raw_MPpm pi (Var v) = Var v) /\
(raw_MPpm pi (App t1 t2) = App (raw_MPpm pi t1) (raw_MPpm pi t2)) /\
(raw_MPpm pi (Abs v t) = Abs v (raw_MPpm pi t))
`;
val _ = export_rewrites ["raw_MPpm_def"]
val _ = overload_on("MP_pmact",``mk_pmact raw_MPpm``);
val _ = overload_on("MPpm", ``pmact MP_pmact``);
val MPpm_raw = store_thm(
"MPpm_raw",
``MPpm = raw_MPpm``,
SRW_TAC [][GSYM pmact_bijections] THEN
SRW_TAC [][is_pmact_def] THENL [
Induct_on `x` THEN SRW_TAC [][],
Induct_on `x` THEN SRW_TAC [][pmact_decompose],
FULL_SIMP_TAC (srw_ss()) [permeq_thm, FUN_EQ_THM] THEN
Induct THEN SRW_TAC [][]
]);
val MPpm_thm = save_thm(
"MPpm_thm",
raw_MPpm_def |> SUBS [GSYM MPpm_raw]);
val _ = export_rewrites["MPpm_thm"];
val MPpm_fresh = Store_thm(
"MPpm_fresh",
``!M x y. ~(x IN params M) /\ ~(y IN params M) ==>
(MPpm [(x,y)] M = M)``,
Induct THEN SRW_TAC [][]);
val MPpm_NIL = Store_thm(
"MPpm_NIL",
``MPpm [] t = t``,
Induct_on `t` THEN SRW_TAC [][]);
val supp_MPpm = Store_thm(
"supp_MPpm",
``supp MP_pmact = params``,
ONCE_REWRITE_TAC [FUN_EQ_THM] THEN GEN_TAC THEN
MATCH_MP_TAC supp_unique_apart THEN SRW_TAC [][support_def] THEN
Induct_on `x` THEN SRW_TAC [][] THEN METIS_TAC []);
val MPpm_vsub = store_thm(
"MPpm_vsub",
``!M v pi N. MPpm pi (vsub M v N) = vsub (MPpm pi M) v (MPpm pi N)``,
Induct_on `N` THEN SRW_TAC [][]);
val vclosed_MPpm = store_thm(
"vclosed_MPpm",
``!M. vclosed M ==> !pi. vclosed (MPpm pi M)``,
HO_MATCH_MP_TAC vclosed_ind THEN SRW_TAC [][vclosed_rules, MPpm_vsub] THEN
METIS_TAC [vclosed_rules]);
val vars_pvsub = store_thm(
"vars_pvsub",
``!p v M. vars (vsub (Parameter p) v M) = vars M DELETE v``,
Induct_on `M` THEN SRW_TAC [][] THEN
SRW_TAC [][pred_setTheory.EXTENSION] THEN METIS_TAC []);
val vclosed_empty_vars = store_thm(
"vclosed_empty_vars",
``!t. vclosed t ==> (vars t = {})``,
HO_MATCH_MP_TAC vclosed_ind THEN SRW_TAC [][vars_pvsub] THEN
FULL_SIMP_TAC (srw_ss()) [pred_setTheory.EXTENSION]);
val vclosed_var = Store_thm(
"vclosed_var",
``!v. ~(vclosed (Var v))``,
ONCE_REWRITE_TAC [vclosed_cases] THEN SRW_TAC [][]);
val vclosed_parameter = Store_thm(
"vclosed_parameter",
``vclosed (Parameter p)``,
ONCE_REWRITE_TAC [vclosed_cases] THEN SRW_TAC [][]);
val _ = set_fixity "=" (Infix(NONASSOC, 100))
val vclosed_app = Store_thm(
"vclosed_app",
``vclosed (App t1 t2) = vclosed t1 /\ vclosed t2``,
CONV_TAC (LAND_CONV (ONCE_REWRITE_CONV [vclosed_cases])) THEN
SRW_TAC [][]);
val vclosed_abs = store_thm(
"vclosed_abs",
``vclosed (Abs v t) = ?p. vclosed (vsub (Parameter p) v t)``,
CONV_TAC (LAND_CONV (ONCE_REWRITE_CONV [vclosed_cases])) THEN
SRW_TAC [][]);
val pvsub_eq_app = prove(
``(vsub (Parameter p) v M = App t1 t2) =
?M1 M2. (M = App M1 M2) /\ (vsub (Parameter p) v M1 = t1) /\
(vsub (Parameter p) v M2 = t2)``,
Cases_on `M` THEN SRW_TAC [][]);
val pvsub_eq_param = prove(
``(vsub (Parameter p1) v M = Parameter p2) =
(M = Var v) /\ (p1 = p2) \/
(M = Parameter p2)``,
Cases_on `M` THEN SRW_TAC [][]);
val pvsub_eq_abs = prove(
``(vsub (Parameter p) v M = Abs s t) =
(?M0. ~(s = v) /\ (M = Abs s M0) /\ (vsub (Parameter p) v M0 = t)) \/
(v = s) /\ (M = Abs s t)``,
Cases_on `M` THEN SRW_TAC [][] THEN METIS_TAC []);
val independent_pvsub = prove(
``!p1 p2 v1 v2 M.
~(v1 = v2) ==> (vsub (Parameter p1) v1 (vsub (Parameter p2) v2 M) =
vsub (Parameter p2) v2 (vsub (Parameter p1) v1 M))``,
Induct_on `M` THEN SRW_TAC [][])
val IN_params_MPpm = store_thm(
"IN_params_MPpm",
``x IN params (MPpm pi M) = lswapstr (REVERSE pi) x IN params M``,
Induct_on `M` THEN SRW_TAC [][pmact_eql]);
val independent_psub_vsub = prove(
``!M v p1 p2 p3.
~(p2 = p3) ==>
(psub (Parameter p1) p2 (vsub (Parameter p3) v M) =
vsub (Parameter p3) v (psub (Parameter p1) p2 M))``,
Induct THEN SRW_TAC [][]);
val (cvclosed_rules, cvclosed_ind, cvclosed_cases) = Hol_reln`
(!p. cvclosed (Parameter p)) /\
(!M N. cvclosed M /\ cvclosed N ==> cvclosed (App M N)) /\
(!v p M. ~(p IN params M) /\ cvclosed (vsub (Parameter p) v M) ==>
cvclosed (Abs v M))
`;
val cvclosed_eqns = prove(
``cvclosed (Parameter p) /\
(cvclosed (App M N) = cvclosed M /\ cvclosed N) /\
(cvclosed (Abs v M) = ?p. ~(p IN params M) /\
cvclosed (vsub (Parameter p) v M))``,
REPEAT CONJ_TAC THEN1
(ONCE_REWRITE_TAC [cvclosed_cases] THEN SRW_TAC [][]) THEN
CONV_TAC (LAND_CONV (ONCE_REWRITE_CONV [cvclosed_cases])) THEN
SRW_TAC [][]);
val cvclosed_strongctxt_ind = prove(
``!P f. (!x. FINITE (f x)) /\
(!p x. P (Parameter p) x) /\
(!M N y. (!x. P M x) /\ (!x. P N x) ==> P (App M N) y) /\
(!v p M y. ~(p IN f y) /\ ~(p IN params M) /\
(!x. P (vsub (Parameter p) v M) x) ==>
P (Abs v M) y)
==>
!M. cvclosed M ==> !x. P M x``,
REPEAT GEN_TAC THEN STRIP_TAC THEN
Q_TAC SUFF_TAC `!M. cvclosed M ==> !pi x. P (MPpm pi M) x`
THEN1 METIS_TAC [MPpm_NIL] THEN
HO_MATCH_MP_TAC cvclosed_ind THEN
SRW_TAC [][] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
FULL_SIMP_TAC (srw_ss()) [MPpm_vsub] THEN
Q_TAC (NEW_TAC "z") `f x UNION params (MPpm pi M)` THEN
Q.EXISTS_TAC `z` THEN SRW_TAC [][] THEN
FIRST_X_ASSUM (Q.SPECL_THEN [`(stringpm pi p, z) :: pi`, `x'`] MP_TAC) THEN
ASM_SIMP_TAC (srw_ss()) [] THEN
`MPpm [(stringpm pi p, z)] (MPpm pi M) = MPpm pi M`
by SRW_TAC [][MPpm_fresh, IN_params_MPpm, stringpm_raw] THEN
FULL_SIMP_TAC (srw_ss()) [GSYM pmact_decompose]);
val cvclosed_strong_ind =
(Q.GEN `P` o Q.GEN `X` o
SIMP_RULE (srw_ss()) [] o
Q.SPECL [`\t u. P t`, `\u. X`] o
INST_TYPE [alpha |-> ``:one``]) cvclosed_strongctxt_ind
val notin_pvsub_I = prove(
``~(p1 = p2) /\ ~(p1 IN params M) ==>
~(p1 IN params (vsub (Parameter p2) v M))``,
Induct_on `M` THEN SRW_TAC [][]);
val cvclosed_p_indep = prove(
``!t. cvclosed t ==>
!pp't0 v p p' t0.
((p, p', t0) = pp't0) /\ (t = vsub (Parameter p) v t0) ==>
cvclosed (vsub (Parameter p') v t0)``,
HO_MATCH_MP_TAC cvclosed_strongctxt_ind THEN
Q.EXISTS_TAC `\(p,p',t0). {p;p'} UNION params t0` THEN
SIMP_TAC (srw_ss()) [pairTheory.FORALL_PROD] THEN
SRW_TAC [][cvclosed_eqns, pvsub_eq_abs, pvsub_eq_param, pvsub_eq_app] THEN
SRW_TAC [][cvclosed_eqns] THENL [
METIS_TAC [],
METIS_TAC [],
FULL_SIMP_TAC (srw_ss()) [] THEN
Q.EXISTS_TAC `p` THEN CONJ_TAC THENL [
MATCH_MP_TAC notin_pvsub_I THEN SRW_TAC [][],
METIS_TAC [independent_pvsub]
],
METIS_TAC []
]);
val cvclosed_pickany = save_thm(
"cvclosed_pickany",
SIMP_RULE (srw_ss() ++ boolSimps.DNF_ss) [] cvclosed_p_indep);
val cvclosed_vclosed = prove(
``!t. cvclosed t ==> vclosed t``,
HO_MATCH_MP_TAC cvclosed_ind THEN SRW_TAC [][vclosed_rules] THEN
METIS_TAC [vclosed_rules]);
val vclosed_cvclosed = prove(
``!t. vclosed t ==> cvclosed t``,
HO_MATCH_MP_TAC vclosed_ind THEN SRW_TAC [][cvclosed_rules] THEN
MATCH_MP_TAC (last (CONJUNCTS cvclosed_rules)) THEN
Q_TAC (NEW_TAC "z") `params t` THEN
METIS_TAC [cvclosed_pickany]);
val cv_eq_vclosed = store_thm(
"cv_eq_vclosed",
``cvclosed = vclosed``,
SRW_TAC [] [FUN_EQ_THM, vclosed_cvclosed, cvclosed_vclosed, EQ_IMP_THM]);
val vclosed_strong_ind = save_thm(
"vclosed_strong_ind",
REWRITE_RULE [cv_eq_vclosed] cvclosed_strong_ind)
val double_pvsub = Store_thm(
"double_pvsub",
``vsub (Parameter p1) v (vsub (Parameter p2) v t) =
vsub (Parameter p2) v t``,
Induct_on `t` THEN SRW_TAC [][]);
val vclosed_pvsub = store_thm(
"vclosed_pvsub",
``!t. vclosed t ==> !p v. vclosed (vsub (Parameter p) v t)``,
HO_MATCH_MP_TAC vclosed_ind THEN SRW_TAC [][vclosed_rules] THEN
METIS_TAC [vclosed_rules, double_pvsub, independent_pvsub]);
val cofin_vclosed_ind = store_thm(
"cofin_vclosed_ind",
``!P. (!p. P (Parameter p)) /\
(!v t X. FINITE X /\
(!p. ~(p IN X) ==> P (vsub (Parameter p) v t)) ==>
P (Abs v t)) /\
(!t1 t2. P t1 /\ P t2 ==> P (App t1 t2)) ==>
!t. vclosed t ==> P t``,
GEN_TAC THEN STRIP_TAC THEN
Q_TAC SUFF_TAC `!t. vclosed t ==> !pi. P (MPpm pi t)`
THEN1 METIS_TAC [MPpm_NIL] THEN
HO_MATCH_MP_TAC vclosed_strong_ind THEN
Q.EXISTS_TAC `{}` THEN SRW_TAC [][] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
Q.EXISTS_TAC `params (MPpm pi t)` THEN
FULL_SIMP_TAC (srw_ss()) [MPpm_vsub] THEN
Q.X_GEN_TAC `p1` THEN STRIP_TAC THEN
FIRST_X_ASSUM (Q.SPEC_THEN `[(p1,stringpm pi p)] ++ pi` MP_TAC) THEN
ASM_SIMP_TAC (srw_ss()) [] THEN
Q_TAC SUFF_TAC `MPpm ((p1,stringpm pi p)::pi) t = MPpm pi t`
THEN1 SRW_TAC [][] THEN
`MPpm [(p1,stringpm pi p)] (MPpm pi t) = MPpm pi t`
by SRW_TAC [][MPpm_fresh, IN_params_MPpm, stringpm_raw] THEN
FULL_SIMP_TAC (srw_ss()) [GSYM pmact_decompose]);
val (avclosed_rules, avclosed_ind, avclosed_cases) = Hol_reln`
(!p. avclosed (Parameter p)) /\
(!t1 t2. avclosed t1 /\ avclosed t2 ==> avclosed (App t1 t2)) /\
(!v t. (!p. avclosed (vsub (Parameter p) v t)) ==>
avclosed (Abs v t))
`;
val avclosed_pickany = prove(
``!t. avclosed t ==>
!v p p' t0. (t = vsub (Parameter p) v t0) ==>
avclosed (vsub (Parameter p') v t0)``,
HO_MATCH_MP_TAC avclosed_ind THEN
SRW_TAC [][pvsub_eq_app, pvsub_eq_param, pvsub_eq_abs] THEN
SRW_TAC [][avclosed_rules] THENL [
METIS_TAC [avclosed_rules],
MATCH_MP_TAC (last (CONJUNCTS avclosed_rules)) THEN
METIS_TAC [independent_pvsub],
MATCH_MP_TAC (last (CONJUNCTS avclosed_rules)) THEN
METIS_TAC []
]);
(* page 12 *)
val avclosed_alpha = store_thm(
"avclosed_alpha",
``avclosed (vsub (Parameter p) v t) ==>
!q. avclosed (vsub (Parameter q) v t)``,
METIS_TAC [avclosed_pickany]);
val vclosed_avclosed = store_thm(
"vclosed_avclosed",
``!t. vclosed t ==> avclosed t``,
HO_MATCH_MP_TAC vclosed_strong_ind THEN
SRW_TAC [][avclosed_rules] THEN
Q.EXISTS_TAC `{}` THEN SRW_TAC [][] THEN
MATCH_MP_TAC (last (CONJUNCTS avclosed_rules)) THEN SRW_TAC [][] THEN
METIS_TAC [avclosed_pickany]);
val avclosed_vclosed = prove(
``!t. avclosed t ==> vclosed t``,
HO_MATCH_MP_TAC avclosed_ind THEN SRW_TAC [][vclosed_abs]);
val avclosed_eq_vclosed = prove(
``avclosed = vclosed``,
SRW_TAC [][FUN_EQ_THM, EQ_IMP_THM, vclosed_avclosed, avclosed_vclosed]);
val vclosed_avclosed_ind = save_thm(
"vclosed_avclosed_ind",
REWRITE_RULE [avclosed_eq_vclosed] avclosed_ind);
val sub = ``\t (p,v). vsub (Parameter p) v t``
val FOLDL_Parameter = prove(
``!l. FOLDL ^sub (Parameter p) l = Parameter p``,
Induct THEN ASM_SIMP_TAC (srw_ss()) [pairTheory.FORALL_PROD]);
val FOLDL_Var = prove(
``!l. (?p. FOLDL ^sub (Var s) l = Parameter p) \/
(FOLDL ^sub (Var s) l = Var s)``,
Induct THEN ASM_SIMP_TAC (srw_ss()) [pairTheory.FORALL_PROD] THEN
FULL_SIMP_TAC (srw_ss()) [] THEN
SRW_TAC [][FOLDL_Parameter]);
val FOLDL_App = prove(
``!l t1 t2. FOLDL ^sub (App t1 t2) l =
App (FOLDL ^sub t1 l) (FOLDL ^sub t2 l)``,
Induct THEN ASM_SIMP_TAC (srw_ss()) [pairTheory.FORALL_PROD]);
val FOLDL_Abs = prove(
``!l v t. FOLDL ^sub (Abs v t) l =
Abs v (FOLDL ^sub t (FILTER (\ (p,u). ~(u = v)) l))``,
Induct THEN ASM_SIMP_TAC (srw_ss()) [pairTheory.FORALL_PROD] THEN
SRW_TAC [][]);
val vsub_FOLDL = prove(
``!l t p s. vsub (Parameter p) s (FOLDL ^sub t l) =
FOLDL ^sub t (l ++ [(p,s)])``,
Induct THEN ASM_SIMP_TAC (srw_ss()) [pairTheory.FORALL_PROD]);
val vars_pvsub = prove(
``vars (vsub (Parameter p) v t) = vars t DELETE v``,
SIMP_TAC (srw_ss()) [pred_setTheory.EXTENSION] THEN
Induct_on `t` THEN SRW_TAC [][] THEN
METIS_TAC []);
val vars_FOLDL = prove(
``!l t. vars (FOLDL ^sub t l) = vars t DIFF set (MAP SND l)``,
Induct THEN ASM_SIMP_TAC (srw_ss()) [pairTheory.FORALL_PROD, vars_pvsub] THEN
SRW_TAC [][pred_setTheory.EXTENSION] THEN METIS_TAC []);
val empty_vars_vclosed = store_thm(
"empty_vars_vclosed",
``!t. (vars t = {}) ==> vclosed t``,
Q_TAC SUFF_TAC
`!t l. (vars (FOLDL (\t (p,v). vsub (Parameter p) v t) t l) = {}) ==>
vclosed (FOLDL (\t (p,v). vsub (Parameter p) v t) t l)`
THEN1 METIS_TAC [listTheory.FOLDL] THEN
Induct THEN
ASM_SIMP_TAC (srw_ss()) [FOLDL_App, FOLDL_Parameter, FOLDL_Abs] THENL [
MAP_EVERY Q.X_GEN_TAC [`s`,`l`] THEN
Q.SPEC_THEN `l` STRIP_ASSUME_TAC FOLDL_Var THEN
FULL_SIMP_TAC (srw_ss()) [],
SRW_TAC [][] THEN
MATCH_MP_TAC (List.nth(CONJUNCTS vclosed_rules, 1)) THEN
SRW_TAC [][vsub_FOLDL] THEN Q.EXISTS_TAC `p` THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
FULL_SIMP_TAC (srw_ss()) [vars_FOLDL, pred_setTheory.EXTENSION] THEN
METIS_TAC []
]);
val (mpbeta_rules, mpbeta_ind, mpbeta_cases) = Hol_reln`
(!M N M'. mpbeta M M' ==> mpbeta (App M N) (App M' N)) /\
(!M N N'. mpbeta N N' ==> mpbeta (App M N) (App M N')) /\
(!u v M N p. ~(p IN params M) /\ ~(p IN params N) /\
mpbeta (vsub (Parameter p) u M) (vsub (Parameter p) v N) ==>
mpbeta (Abs u M) (Abs v N)) /\
(!x M N. vclosed (Abs x M) /\ vclosed N ==>
mpbeta (App (Abs x M) N) (vsub N x M))
`;
open chap3Theory
val (convert_rules, convert_ind, convert_cases) = Hol_reln`
(!p. convert (Parameter p) (VAR p)) /\
(!t1 t2 M N. convert t1 M /\ convert t2 N ==>
convert (App t1 t2) (M @@ N)) /\
(!u v t M. ~(u IN params t) /\ convert (vsub (Parameter u) v t) M ==>
convert (Abs v t) (LAM u M))
`;
val convert_param = Store_thm(
"convert_param",
``convert (Parameter p) t = (t = VAR p)``,
ONCE_REWRITE_TAC [convert_cases] THEN SRW_TAC [][]);
val convert_app = store_thm(
"convert_app",
``convert (App M N) t = ?t0 t1. convert M t0 /\ convert N t1 /\
(t = t0 @@ t1)``,
CONV_TAC (LAND_CONV (ONCE_REWRITE_CONV [convert_cases])) THEN
SRW_TAC [][] THEN METIS_TAC []);
val convert_abs = save_thm(
"convert_abs",
(SIMP_RULE (srw_ss()) [] o Q.SPEC `Abs v M`) convert_cases)
val UNION_DELETE = prove(
``(s UNION t) DELETE e = (s DELETE e) UNION (t DELETE e)``,
SRW_TAC [][pred_setTheory.EXTENSION] THEN METIS_TAC []);
val params_vsub = store_thm(
"params_vsub",
``!t p v. ~(p IN params t) ==>
(params (vsub (Parameter p) v t) DELETE p = params t)``,
Induct THEN SRW_TAC [][UNION_DELETE] THEN
SRW_TAC [][pred_setTheory.EXTENSION] THEN METIS_TAC []);
val convert_MPpm = prove(
``!t M. convert t M ==> !pi. convert (MPpm pi t) (tpm pi M)``,
HO_MATCH_MP_TAC convert_ind THEN
SRW_TAC [][convert_rules, MPpm_vsub] THEN
MATCH_MP_TAC (last (CONJUNCTS convert_rules)) THEN
SRW_TAC [][IN_params_MPpm]);
val convert_MPpm_E = Store_thm(
"convert_MPpm_E",
``convert (MPpm pi t) (tpm pi M) = convert t M``,
METIS_TAC [convert_MPpm, pmact_inverse]);
val convert_strong_ind = store_thm(
"convert_strong_ind",
``!P f. (!x. FINITE (f x)) /\
(!p c. P (Parameter p) (VAR p) c) /\
(!t1 t2 M N c.
(!d1. P t1 M d1) /\ convert t1 M /\
(!d2. P t2 N d2) /\ convert t2 N ==>
P (App t1 t2) (M @@ N) c) /\
(!u v t M c. ~(u IN params t) /\ ~(u IN f c) /\
convert (vsub (Parameter u) v t) M /\
(!d. P (vsub (Parameter u) v t) M d) ==>
P (Abs v t) (LAM u M) c)
==>
!t M. convert t M ==> !c. P t M c``,
REPEAT GEN_TAC THEN STRIP_TAC THEN
Q_TAC SUFF_TAC `!t M. convert t M ==>
convert t M /\
!c pi. P (MPpm pi t) (tpm pi M) c`
THEN1 METIS_TAC [pmact_nil] THEN
HO_MATCH_MP_TAC convert_ind THEN
SRW_TAC [][convert_rules, MPpm_vsub] THEN
Q_TAC (NEW_TAC "z") `FV (tpm pi M) UNION f c UNION params (MPpm pi t)` THEN
`LAM (lswapstr pi u) (tpm pi M) = LAM z (tpm [(z, lswapstr pi u)] (tpm pi M))`
by SRW_TAC [][termTheory.tpm_ALPHA] THEN
SRW_TAC [][] THEN
`MPpm ((z,lswapstr pi u)::pi) t = MPpm [(z,lswapstr pi u)] (MPpm pi t)`
by SRW_TAC [][GSYM pmact_decompose] THEN
` _ = MPpm pi t`
by SRW_TAC [][MPpm_fresh, IN_params_MPpm] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN SRW_TAC [][]
THEN1 (`convert (MPpm ((z,lswapstr pi u)::pi) (vsub (Parameter u) v t))
(tpm ((z,lswapstr pi u)::pi) M)`
by METIS_TAC [convert_MPpm_E] THEN
POP_ASSUM MP_TAC THEN
ASM_SIMP_TAC bool_ss [MPpm_vsub] THEN
SRW_TAC [][GSYM pmact_decompose]) THEN
FIRST_X_ASSUM (Q.SPECL_THEN [`d`, `((z,lswapstr pi u)::pi)`] MP_TAC) THEN
SRW_TAC [][GSYM pmact_decompose]);
val convert_params = store_thm(
"convert_params",
``!t M. convert t M ==> (params t = FV M)``,
HO_MATCH_MP_TAC convert_ind THEN
SRW_TAC [][] THEN METIS_TAC [params_vsub]);
val vclosed_convert = store_thm(
"vclosed_convert",
``!t. vclosed t ==> ?M. convert t M``,
HO_MATCH_MP_TAC vclosed_strong_ind THEN Q.EXISTS_TAC `{}` THEN
SRW_TAC [][] THEN METIS_TAC [convert_rules]);
val convert_vclosed = store_thm(
"convert_vclosed",
``!t M. convert t M ==> vclosed t``,
HO_MATCH_MP_TAC convert_ind THEN SRW_TAC [][vclosed_abs] THEN
METIS_TAC []);
val convert_vsub = prove(
``!t M. convert t M ==>
!t0p1p2 v p1 p2 t0.
(t0p1p2 = (t0,p1,p2)) /\
(vsub (Parameter p1) v t0 = t) /\
~(p1 IN params t0) /\ ~(p2 IN params t0) ==>
convert (vsub (Parameter p2) v t0) (tpm [(p1,p2)] M)``,
HO_MATCH_MP_TAC convert_strong_ind THEN
Q.EXISTS_TAC `\ (t0,p1,p2). {p1;p2} UNION params t0` THEN
SIMP_TAC (srw_ss()) [pairTheory.FORALL_PROD] THEN
REPEAT CONJ_TAC THENL [
(* parameter case *)
SRW_TAC [][pvsub_eq_param] THEN
FULL_SIMP_TAC (srw_ss()) [convert_rules],
(* App case *)
SRW_TAC [][pvsub_eq_app] THEN
FULL_SIMP_TAC (srw_ss()) [convert_rules],
(* Abs case *)
MAP_EVERY Q.X_GEN_TAC [`u`, `v`, `t`, `M`, `t0`, `p1`, `p2`] THEN
STRIP_TAC THEN Q.X_GEN_TAC `v'` THEN STRIP_TAC THEN
FULL_SIMP_TAC (srw_ss()) [pvsub_eq_abs] THENL [
SRW_TAC [][] THEN FULL_SIMP_TAC (srw_ss()) [] THEN
MATCH_MP_TAC (last (CONJUNCTS convert_rules)) THEN
SRW_TAC [][notin_pvsub_I] THEN
METIS_TAC [independent_pvsub, notin_pvsub_I],
MATCH_MP_TAC (last (CONJUNCTS convert_rules)) THEN
SRW_TAC [][] THEN
FULL_SIMP_TAC (srw_ss()) [] THEN
`convert (MPpm [(p1,p2)] (vsub (Parameter u) v t))
(tpm [(p1,p2)] M)`
by SRW_TAC [][] THEN
Q_TAC SUFF_TAC `MPpm [(p1,p2)] (vsub (Parameter u) v t) =
vsub (Parameter u) v t`
THEN1 METIS_TAC [] THEN
SRW_TAC [][MPpm_vsub]
]
]);
val convert_vsub_thm = save_thm(
"convert_vsub_thm",
SIMP_RULE (srw_ss() ++ boolSimps.DNF_ss) [] convert_vsub)
val convert_unique = store_thm(
"convert_unique",
``!t M. convert t M ==> !N. convert t N ==> (M = N)``,
HO_MATCH_MP_TAC convert_ind THEN REPEAT CONJ_TAC THENL [
ONCE_REWRITE_TAC [convert_cases] THEN SRW_TAC [][],
REPEAT GEN_TAC THEN STRIP_TAC THEN
ONCE_REWRITE_TAC [convert_cases] THEN SRW_TAC [][] THEN
SRW_TAC [][],
REPEAT GEN_TAC THEN STRIP_TAC THEN
ONCE_REWRITE_TAC [convert_cases] THEN SRW_TAC [][] THEN
SRW_TAC [][termTheory.LAM_eq_thm] THEN
Cases_on `u = u'` THEN1 METIS_TAC [] THEN
ASM_SIMP_TAC (srw_ss()) [] THEN
`FV M' = params (vsub (Parameter u') v t)`
by METIS_TAC [convert_params] THEN
SRW_TAC [][notin_pvsub_I] THEN
METIS_TAC [convert_vsub_thm, pmact_flip_args]
]);
val convert_onto = store_thm(
"convert_onto",
``!M. ?t. convert t M``,
HO_MATCH_MP_TAC termTheory.simple_induction THEN REPEAT STRIP_TAC THENL [
Q.EXISTS_TAC `Parameter s` THEN SRW_TAC [][convert_rules],
Q.EXISTS_TAC `App t t'` THEN SRW_TAC [][convert_rules],
Q.SPECL_THEN [`t`, `v`]
(Q.X_CHOOSE_THEN `u` (Q.X_CHOOSE_THEN `t0` STRIP_ASSUME_TAC))
shape_lemma THEN
SRW_TAC [][] THEN
Q.EXISTS_TAC `Abs u t0` THEN METIS_TAC [convert_rules]
])
val params_vsub_upperbound = prove(
``p IN params (vsub N v M) ==> p IN params N \/ p IN params M``,
Induct_on `M` THEN SRW_TAC [][] THEN METIS_TAC []);
val params_vsub_lowerbound = prove(
``p IN params M ==> p IN params (vsub N v M)``,
Induct_on `M` THEN SRW_TAC [][] THEN METIS_TAC []);
val mpbeta_params = store_thm(
"mpbeta_params",
``!t u. mpbeta t u ==> !p. p IN params u ==> p IN params t``,
HO_MATCH_MP_TAC mpbeta_ind THEN SRW_TAC [][] THENL [
METIS_TAC [],
METIS_TAC [],
METIS_TAC [],
METIS_TAC [],
`p' IN params (Parameter p) \/ p' IN params M`
by METIS_TAC [params_vsub_lowerbound, params_vsub_upperbound] THEN
FULL_SIMP_TAC (srw_ss()) [],
METIS_TAC [params_vsub_upperbound]
]);
val vsub_vclosed = store_thm(
"vsub_vclosed",
``!t. vclosed t ==> (vsub t' v t = t)``,
REPEAT STRIP_TAC THEN IMP_RES_TAC vclosed_empty_vars THEN
SRW_TAC [][]);
val general_vsub_commute = store_thm(
"general_vsub_commute",
``vclosed t1 /\ vclosed t2 /\ ~(v1 = v2) ==>
(vsub t1 v1 (vsub t2 v2 t) = vsub t2 v2 (vsub t1 v1 t))``,
Induct_on `t` THEN SRW_TAC [][vsub_vclosed] THEN METIS_TAC []);
val convert_sub = store_thm(
"convert_sub",
``~(p IN params t1) /\
convert (vsub (Parameter p) v t1) M /\
convert t2 N ==>
convert (vsub t2 v t1) ([N/p] M)``,
Q_TAC SUFF_TAC
`!t M. convert t M ==>
!t1pt2 t1 t2 p v N.
(t1pt2 = (t1,p,t2)) /\
~(p IN params t1) /\
(vsub (Parameter p) v t1 = t) /\
convert t2 N ==>
convert (vsub t2 v t1) ([N/p] M)`
THEN1 SRW_TAC [][] THEN
HO_MATCH_MP_TAC convert_strong_ind THEN
Q.EXISTS_TAC `\ (t1,p,t2). {p} UNION params t1 UNION params t2` THEN
ASM_SIMP_TAC (srw_ss()) [pairTheory.FORALL_PROD] THEN
SRW_TAC [][pvsub_eq_param, pvsub_eq_app, pvsub_eq_abs] THEN
FULL_SIMP_TAC (srw_ss()) [termTheory.SUB_THM, convert_rules] THENL [
`FV N = params p_2` by SRW_TAC [][convert_params] THEN
SRW_TAC [][termTheory.SUB_THM] THEN
MATCH_MP_TAC (last (CONJUNCTS convert_rules)) THEN
`~(u IN params (vsub p_2 v' M0))`
by METIS_TAC [params_vsub_upperbound] THEN
SRW_TAC [][] THEN
`vclosed p_2` by METIS_TAC [convert_vclosed] THEN
`vsub (Parameter u) v (vsub p_2 v' M0) =
vsub p_2 v' (vsub (Parameter u) v M0)`
by SRW_TAC [][general_vsub_commute] THEN
SRW_TAC [][] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
SRW_TAC [][general_vsub_commute, notin_pvsub_I],
`FV N = params p_2` by SRW_TAC [][convert_params] THEN
SRW_TAC [][termTheory.SUB_THM] THEN
MATCH_MP_TAC (last (CONJUNCTS convert_rules)) THEN
Q_TAC SUFF_TAC `~(p_1' IN FV M)` THEN1 SRW_TAC [][termTheory.lemma14b] THEN
`FV M = params (vsub (Parameter u) v t)`
by SRW_TAC [][convert_params] THEN
SRW_TAC [][notin_pvsub_I]
]);
val mpbeta_MPpm = prove(
``!t u. mpbeta t u ==> !pi. mpbeta (MPpm pi t) (MPpm pi u)``,
HO_MATCH_MP_TAC mpbeta_ind THEN
SRW_TAC [][mpbeta_rules, MPpm_vsub] THENL [
MATCH_MP_TAC (List.nth(CONJUNCTS mpbeta_rules, 2)) THEN
Q.EXISTS_TAC `stringpm pi p` THEN SRW_TAC [][IN_params_MPpm],
MATCH_MP_TAC (last (CONJUNCTS mpbeta_rules)) THEN
`MPpm pi (Abs x M) = Abs x (MPpm pi M)` by SRW_TAC [][] THEN
METIS_TAC [vclosed_MPpm]
]);
val mpbeta_strong_ind =
IndDefLib.derive_strong_induction(mpbeta_rules, mpbeta_ind)
val mpbeta_ccbeta = store_thm(
"mpbeta_ccbeta",
``!t u. mpbeta t u ==>
!M N. convert t M /\ convert u N ==> compat_closure beta M N``,
HO_MATCH_MP_TAC mpbeta_strong_ind THEN
SRW_TAC [][compat_closure_rules, convert_abs, convert_app] THENL [
METIS_TAC [compat_closure_rules, convert_unique],
METIS_TAC [compat_closure_rules, convert_unique],
SRW_TAC [boolSimps.DNF_ss][cc_beta_thm, termTheory.LAM_eq_thm,
termTheory.tpm_eqr] THEN
Cases_on `u' = u''` THEN ASM_SIMP_TAC (srw_ss()) [] THENL [
SRW_TAC [][] THEN
`convert (vsub (Parameter p) u M) (tpm [(p,u')] M'') /\
convert (vsub (Parameter p) v N) (tpm [(p,u')] M''')`
by METIS_TAC [convert_vsub_thm, pmact_flip_args] THEN
METIS_TAC [cc_beta_tpm_eqn, pmact_inverse],
`~(u' IN FV M''')`
by (`FV M''' = params (vsub (Parameter u'') v N)`
by SRW_TAC [][convert_params] THEN
SRW_TAC [][] THEN
Cases_on `u' = p` THEN1 SRW_TAC [][notin_pvsub_I] THEN
`mpbeta (MPpm [(u'',p)] (vsub (Parameter p) u M))
(MPpm [(u'',p)] (vsub (Parameter p) v N))`
by SRW_TAC [][mpbeta_MPpm] THEN
POP_ASSUM MP_TAC THEN
SRW_TAC [][MPpm_vsub, MPpm_fresh] THEN
Q_TAC SUFF_TAC
`~(u' IN params (vsub (Parameter u'') u (MPpm [(u'',p)] M)))`
THEN1 METIS_TAC [mpbeta_params] THEN
SRW_TAC [][notin_pvsub_I, IN_params_MPpm]) THEN
`convert (vsub (Parameter p) u M) (tpm [(u',p)] M'') /\
convert (vsub (Parameter p) v N) (tpm [(u'',p)] M''')`
by METIS_TAC [convert_vsub_thm] THEN
`compat_closure beta (tpm [(u',p)] M'') (tpm [(u'',p)] M''')`
by METIS_TAC [] THEN
`compat_closure beta M'' (tpm [(u',p)] (tpm [(u'',p)] M'''))`
by METIS_TAC [cc_beta_tpm, pmact_sing_inv] THEN
Q_TAC SUFF_TAC `tpm [(u',p)] (tpm [(u'',p)] M''') = tpm [(u'',u')] M'''`
THEN1 METIS_TAC [] THEN
Cases_on `p = u'` THEN1 SRW_TAC [][] THEN
Cases_on `p = u''` THEN1 SRW_TAC [][pmact_flip_args] THEN
ONCE_REWRITE_TAC [GSYM pmact_sing_to_back] THEN
SRW_TAC [][] THEN
`~(p IN FV M''') /\ ~(u' IN FV M''')`
by METIS_TAC [convert_params, notin_pvsub_I] THEN
SRW_TAC [][termTheory.tpm_fresh]
],
`N' = [t1/u]M''` by METIS_TAC [convert_sub, convert_unique] THEN
SRW_TAC [][cc_beta_thm] THEN METIS_TAC []
]);
val alpha_def = Define`alpha t1 t2 = ?M. convert t1 M /\ convert t2 M`
val alpha_trans = store_thm(
"alpha_trans",
``alpha t1 t2 /\ alpha t2 t3 ==> alpha t1 t3``,
SRW_TAC [][alpha_def] THEN METIS_TAC [convert_unique]);
val alpha_sym = store_thm(
"alpha_sym",
``alpha t1 t2 ==> alpha t2 t1``,
SRW_TAC [][alpha_def] THEN METIS_TAC []);
val alpha_prefl = store_thm(
"alpha_prefl",
``alpha t t = vclosed t``,
SRW_TAC [][alpha_def] THEN METIS_TAC [convert_vclosed, vclosed_convert]);
val convert_to_app = prove(
``convert t (M1 @@ M2) = ?t1 t2. (t = App t1 t2) /\ convert t1 M1 /\
convert t2 M2``,
CONV_TAC (LAND_CONV (ONCE_REWRITE_CONV [convert_cases])) THEN
SRW_TAC [][]);
val convert_to_lam = prove(
``convert t (LAM v M) = ?u t0. (t = Abs u t0) /\ ~(v IN params t0) /\
convert (vsub (Parameter v) u t0) M``,
CONV_TAC (LAND_CONV (ONCE_REWRITE_CONV [convert_cases])) THEN
SRW_TAC [boolSimps.DNF_ss][termTheory.LAM_eq_thm, termTheory.tpm_eqr] THEN
SRW_TAC [][EQ_IMP_THM] THEN
Q_TAC SUFF_TAC `~(v IN params t')`
THEN1 METIS_TAC [convert_vsub_thm, pmact_flip_args,
pmact_sing_inv] THEN
`~(v IN FV (tpm [(v,u)] M))` by SRW_TAC [][] THEN
`~(v IN params (vsub (Parameter u) v' t'))`
by METIS_TAC [convert_params] THEN
METIS_TAC [params_vsub_lowerbound]);
val alpha_app = prove(
``alpha (App t1 t2) t = ?t1' t2'. (t = App t1' t2') /\
alpha t1 t1' /\ alpha t2 t2'``,
SRW_TAC [boolSimps.DNF_ss][alpha_def, convert_app, convert_to_app] THEN
METIS_TAC []);
(* Curiously, only need to alpha-convert after a reduction, and not
before. *)
val ccbeta_beta = store_thm(
"ccbeta_beta",
``!M N. compat_closure beta M N ==>
!t u. convert t M /\ convert u N ==>
(alpha O mpbeta) t u``,
HO_MATCH_MP_TAC ccbeta_ind THEN Q.EXISTS_TAC `{}` THEN
SRW_TAC [][relationTheory.O_DEF, convert_to_app, convert_to_lam] THENL [
IMP_RES_TAC convert_vclosed THEN
Q.EXISTS_TAC `vsub t2 u' t0` THEN CONJ_TAC THENL [
MATCH_MP_TAC (last (CONJUNCTS mpbeta_rules)) THEN
SRW_TAC [][vclosed_abs] THEN METIS_TAC [],
SRW_TAC [][alpha_def] THEN METIS_TAC [convert_sub]
],
`?y. mpbeta t1 y /\ alpha y t1'` by METIS_TAC [] THEN
Q.EXISTS_TAC `App y t2` THEN
IMP_RES_TAC convert_vclosed THEN
SRW_TAC [][alpha_app, alpha_prefl] THEN
SRW_TAC [][mpbeta_rules, alpha_app, alpha_prefl] THEN
SRW_TAC [][alpha_def] THEN METIS_TAC [],
`?y. mpbeta t2 y /\ alpha y t2'` by METIS_TAC [] THEN
Q.EXISTS_TAC `App t1 y` THEN
IMP_RES_TAC convert_vclosed THEN
SRW_TAC [][alpha_app, alpha_prefl] THEN
SRW_TAC [][mpbeta_rules, alpha_app, alpha_prefl] THEN
SRW_TAC [][alpha_def] THEN METIS_TAC [],
`?y. mpbeta (vsub (Parameter v) u' t0) y /\
alpha y (vsub (Parameter v) u'' t0')`
by METIS_TAC [] THEN
`?v1 t1. (y = vsub (Parameter v) v1 t1) /\ ~(v IN params t1)`
by METIS_TAC [shape_lemma] THEN
Q.EXISTS_TAC `Abs v1 t1` THEN CONJ_TAC THENL [
MATCH_MP_TAC (List.nth(CONJUNCTS mpbeta_rules, 2)) THEN
Q.EXISTS_TAC `v` THEN SRW_TAC [][],
ALL_TAC
] THEN
SRW_TAC [boolSimps.DNF_ss][alpha_def, convert_abs] THEN
MAP_EVERY Q.EXISTS_TAC [`v`, `N`, `v`, `N`] THEN
FULL_SIMP_TAC (srw_ss()) [alpha_def] THEN METIS_TAC [convert_unique]
]);
val _ = export_theory()