-
Notifications
You must be signed in to change notification settings - Fork 6
/
model_view_without_text.py
340 lines (299 loc) · 14.6 KB
/
model_view_without_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# -*- coding: utf-8 -*-
''' OpenSees Visual Interface
This package will watch your OpenSees file(s) and generate a live preview
'''
import os
import time
import matplotlib.pyplot as pl
import matplotlib.animation as animation
from mpl_toolkits.mplot3d import Axes3D
# Declare OpenSees tcl files to watch and refresh rate
# NB: Must be tuple. If only one file, make sure it is in parentheses and
# followed by a comma.
# Eg - One file - tclfiles = ('example.tcl',)
# Eg - Two files - tclfiles = ('example1.tcl', 'example2.tcl')
# tclfiles = ('samplemodel3d.tcl',)
tclfiles = ('node.tcl','Section.tcl','Element.tcl','Fix.tcl','equalDOF.tcl')
# Specify the refresh rate of the viewer. 1 second is default and works well
# for small models. For larger models you may want to increase the time.
refresh_rate = 10
# time between viewer refresh (in seconds)
# Set viewport visual style
bg_colour = 'lightgrey' # background colour
pl.rc('font', family='Monospace', size=10) # set font for labels
node_style = {'color':'black', 'marker':'.', 'markersize':1} # nodes
ele_style = {'color':'blue', 'linewidth':1, 'linestyle':'-'} # elements
rigid_style = {'color':'red', 'linewidth':2, 'linestyle':'-'} # elements
axis_style = {'color':'grey', 'linewidth':1, 'linestyle':'--'} # x=0, y=0 lines
offset = 0.05 #offset for text
# 2D
bc_style = {'color':'black', 'markeredgewidth':1, 'markersize':9,
'fillstyle':'none'} # node translation fixity (boundary conditions)
bcrot_style = {'color':'black', 'markeredgewidth':1, 'markersize':10,
'fillstyle':'none'} # node rotation fixity (boundary conditions)
# 3D
azimuth = -50 #degrees
elevation = 20 #degrees
bc_style3d = {'length':0.3, 'arrow_length_ratio':0.5, 'colors':'black'}
bcrot_style3d = {}
def flatten_tcl(tclfiles):
''' This function takes a tcl file and rewrites it to a temporary file.
The new temporary file will be flattened, meaning all expressions are
replaced with their evaluated value (as a float)
'''
import os
variables = {} # a disctionary of variables set in the tcl file
tempfiles = [] # a list of the temporary files created
ns = {'__builtins__':None} # create empty namespace to use eval() safely
for tclfile in tclfiles:
tempfiles.append(tclfile[:-4]+'_temp.tcl')
with open(tclfile) as f_in, open(tempfiles[-1], 'w') as f_out:
for line in f_in:
# For lines that define variable, add that variable to dictionary
if line[:3] == 'set':
# If the line has 3 words, the variable is set directly and we
# can add it to our dictionary of variable values
if len(line.split()) == 3:
variables['$'+line.split()[1]] = float(line.split()[2])
f_out.write(line)
# If the thrid word is an expression, evaluate before write
elif '[expr' in line.split()[2]:
expr = line[line.find('[expr ')+6:line.find(']')]
for variable in variables:
if variable in expr:
# If variables in expr, replace with value
expr = expr.replace(variable,
str(variables[variable]))
# Replace expression with evaluated value of expression
expr = eval(expr, ns)
variables['$'+line.split()[1]] = float(expr)
f_out.write(' '.join(('set', line.split()[1], str(expr))))
# For lines that don't define variable, eval expressions and print
else:
for variable in variables:
line = line.replace(variable, str(variables[variable]))
while '[expr' in line: # evaluate any expressions, then print
expr = line[line.find('[expr ')+6:line.find(']')]
line = line.replace('[expr '+expr+']', str(eval(expr, ns)))
f_out.write(line)
# Combine all _temp tcl files into one messy one, also detect for 3D of 2D
ndm = 2 # assume 3 dimensions unless '-ndm 2' detected
with open('temp.tcl', 'w') as f:
for tempfile in tempfiles:
with open(tempfile, 'r') as temp:
for line in temp:
f.write(line)
if ndm == 2 and '-ndm 3' in line:
ndm = 3
if ndm == 3 and '-ndm 2' in line:
ndm = 'Uh oh, we\'re not sure which ndm to use...'
os.remove(tempfile)
return 'temp.tcl', ndm
def update_viewport_2d(frame, tclfiles):
''' This function clears a matplotlib figure axis, then reads through your
tclfiles to determine locations of nodes, elements and fix conditions. It
then plots these things. It uses a flattened file generated by
flatten_tcl() so that expressions and variables can be supported.
'''
tclfile, ndm = flatten_tcl(tclfiles)
ax.clear()
ax.set_xticks([]); ax.set_yticks([]) # hide axis tick marks/scale
ax.axhline(**axis_style); ax.axvline(**axis_style) # draw axis lines
# Read node info
nodes = []
with open(tclfile) as f:
for line in f:
if 'node' in line[:4] and len(line.split()) == 4:
# Append [node tag, coordinate 1, coordinate 2]
node = line.split()
nodes.append((int(node[1]), float(node[2]), float(node[3])))
# Read element info
elements = []
with open(tclfile) as f:
for line in f:
if 'element' in line[:7] and len(line.split()) >= 5:
# Append [element type, element tag, iNode, jNode]
ele = line.split()
elements.append((ele[1], int(ele[2]), int(ele[3]), int(ele[4])))
# Read boundary conditions
fixities = []
with open(tclfile) as f:
for line in f:
if 'fix' in line[:3] and len(line.split()) == 5:
# Append [node tag, df1, df2, df3]
fix = line.split()
fixities.append((int(fix[1]), int(fix[2]),
int(fix[3]), int(fix[4])))
# Display nodes
if nodes: # make sure some nodes exist before using them
for node in nodes:
ax.plot(node[1], node[2], linewidth=0, **node_style)
#ax.text(node[1]+offset, node[2]+offset,
#'N'+str(node[0]), fontweight='bold') #label node
# Function that returns node coords from a nodetag
def nodecoords(nodetag, nodes=nodes):
for node in nodes:
if node[0] == nodetag:
return node[1], node[2] # Coord-1 and Coord-2
break
# Display elements
if nodes and elements: # make sure some elements exist before using them
for element in elements:
iNode = nodecoords(element[2])
jNode = nodecoords(element[3])
if iNode and jNode: # make sure both nodes exist before using them
ax.plot((iNode[0], jNode[0]), (iNode[1], jNode[1]),
marker='', **ele_style)
#ax.text(offset+(iNode[0]+jNode[0])/2,
#offset+(iNode[1]+jNode[1])/2,
#'E'+str(element[1])) #label element
# Display boundary conditions
if fixities: # make sure some boundary conditions exist before using them
for fixity in fixities:
if any(fixity[0] in node for node in nodes): # make sure node exists
node_x, node_y = nodecoords(fixity[0])
if fixity[1] == 1: # DOF 1 fixed
ax.plot(node_x-offset, node_y, marker='>', **bc_style)
if fixity[2] == 1: # DOF 2 fixed
ax.plot(node_x, node_y-offset, marker='^', **bc_style)
if fixity[3] == 1: # DOF 3 fixed
ax.plot(node_x, node_y, marker='o', **bcrot_style)
os.remove(tclfile)
def update_viewport_3d(frame, tclfiles):
''' This function clears a matplotlib figure axis, then reads through your
tclfiles to determine locations of nodes, elements and fix conditions. It
then plots these things. It uses a flattened file generated by
flatten_tcl() so that expressions and variables can be supported.
'''
tclfile, ndm = flatten_tcl(tclfiles)
ax.clear()
# ax.set_axis_off()
# ax.set_xticks([]); ax.set_yticks([]); ax.set_zticks([]) # hide tick marks/scale
# Read node info
nodes = []
with open(tclfile) as f:
for line in f:
if 'node' in line[:4] and len(line.split()) == 5:
# Append [node tag, coordinate 1, coordinate 2]
node = line.split()
nodes.append((int(node[1]), float(node[2]),
float(node[3]), float(node[4])))
# Read element info
elements = []
with open(tclfile) as f:
for line in f:
if 'element' in line[:7] and len(line.split()) >= 5:
# Append [element type, element tag, iNode, jNode]
ele = line.split()
elements.append((ele[1], int(ele[2]), int(ele[3]), int(ele[4])))
# Read boundary conditions
fixities = []
with open(tclfile) as f:
for line in f:
if 'fix' in line[:3] and len(line.split()) == 8:
# Append [node tag, df1, df2, df3]
fix = line.split()
fixities.append([int(fix[i]) for i in range(1,8)])
EqualDOF = []
with open(tclfile) as f:
for line in f:
if 'equalDOF' in line[:8] and len(line.split()) == 9:
# Append [node tag, df1, df2, df3]
Equal = line.split()
EqualDOF.append([int(Equal[i]) for i in range(1,9)])
# Display nodes
if nodes: # make sure some nodes exist before using them
for node in nodes:
ax.scatter(xs=node[1], ys=node[2], zs=node[3], **node_style)
# ax.scatter(xs=node[1], ys=node[2], zs=node[3],
# linewidth=0, **node_style)
#ax.text(x=node[1]+offset, y=node[2]+offset, z=node[3]+offset,
#s='N'+str(node[0]), fontweight='bold',fontsize = 3) #label node
# Scale axes to preserve aspect ratio of 1
node_mins = list(nodes[0][1:4])
node_maxs = list(nodes[0][1:4])
for node in nodes:
for i in range(0,3):
if node[i+1] < node_mins[i]:
node_mins[i] = node[i+1]
if node[i+1] > node_maxs[i]:
node_maxs[i] = node[i+1]
view_centre = [(i+j)/2 for i, j in zip(node_maxs, node_mins)]
view_range = max(node_maxs) - min(node_mins)
ax.set_xlim(view_centre[0]-(view_range/2), view_centre[0]+(view_range/2))
ax.set_ylim(view_centre[1]-(view_range/2), view_centre[1]+(view_range/2))
ax.set_zlim(view_centre[2]-(view_range/2), view_centre[2]+(view_range/2))
# Draw axes at origin
ax.plot(xs=(0.0, 1.2*(view_centre[0]+(view_range/2))),
ys=(0, 0), zs=(0, 0), **axis_style)
ax.plot(ys=(0.0, 1.2*(view_centre[1]+(view_range/2))),
xs=(0, 0), zs=(0, 0), **axis_style)
ax.plot(zs=(0.0, 1.2*(view_centre[2]+(view_range/2))),
xs=(0, 0), ys=(0, 0), **axis_style)
# Function that returns node coords from a nodetag
def nodecoords(nodetag, nodes=nodes):
for node in nodes:
if node[0] == nodetag:
return node[1], node[2], node[3] # Coord-1, Coord-2, Coord-3
break
# Display elements
if nodes and elements: # make sure some elements exist before using them
for element in elements:
iNode = nodecoords(element[2])
jNode = nodecoords(element[3])
if iNode and jNode: # make sure both nodes exist before using them
ax.plot(xs=(iNode[0], jNode[0]), ys=(iNode[1], jNode[1]),
zs=(iNode[2], jNode[2]), marker='', **ele_style)
#ax.text(x=offset+(iNode[0]+jNode[0])/2,
#y=offset+(iNode[1]+jNode[1])/2,
#z=offset+(iNode[2]+jNode[2])/2,
#s='E'+str(element[1])) #label element
if nodes and EqualDOF:
for equal in EqualDOF:
iNode = nodecoords(EqualDOF[0])
jNode = nodecoords(EqualDOF[1])
if iNode and jNode: # make sure both nodes exist before using them
ax.plot(xs=(iNode[0], jNode[0]), ys=(iNode[1], jNode[1]),
zs=(iNode[2], jNode[2]), marker='', **rigid_style)
# Display boundary conditions
if fixities: # make sure some boundary conditions exist before using them
for fixity in fixities:
if any(fixity[0] in node for node in nodes): # make sure node exists
node_x, node_y, node_z = nodecoords(fixity[0])
if fixity[1] == 1: # DOF 1 fixed
ax.quiver(node_x-offset, node_y, node_z,
1, 0, 0, pivot='tip', **bc_style3d)
if fixity[2] == 1: # DOF 2 fixed
ax.quiver(node_x, node_y-offset, node_z,
0, 1, 0, pivot='tip', **bc_style3d)
if fixity[3] == 1: # DOF 3 fixed
ax.quiver(node_x, node_y, node_z-offset,
0, 0, 1, pivot='tip', **bc_style3d)
os.remove(tclfile)
# Determine if we have 2D or 3D model
tclfile, ndm = flatten_tcl(tclfiles)
os.remove(tclfile)
# Create figure
if ndm == 2:
fig = pl.figure(figsize=(6, 6))
ax = fig.add_subplot(1, 1, 1, aspect=1, frameon=False)
fig.set_facecolor(bg_colour)
fig.text(0.01, 0.01, ', '.join(tclfiles),
va='bottom', ha='left', color='grey', fontweight='bold') # display file
fig.subplots_adjust(left=0.08, bottom=0.08, right=0.92, top=0.92)
ani = animation.FuncAnimation(fig, update_viewport_2d, interval=refresh_rate*1000,
fargs=(tclfiles,))
elif ndm == 3:
fig = pl.figure(figsize=(8, 8))
ax = fig.add_subplot(1, 1, 1, projection='3d')
ax.view_init(elev=elevation, azim=azimuth)
ax.set_facecolor(bg_colour)
fig.subplots_adjust(left=0.00, bottom=0.00, right=1.00, top=1.00)
node_style['markersize'] *= 5
node_style['s'] = node_style.pop('markersize') # 's' is used in scatter
fig.text(0.01, 0.01, ', '.join(tclfiles),
va='bottom', ha='left', color='grey', fontweight='bold') # display file
ani = animation.FuncAnimation(fig, update_viewport_3d, interval=refresh_rate*1000,
fargs=(tclfiles,))
else: print(ndm)
pl.show()