-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathbars.py
238 lines (217 loc) · 9.2 KB
/
bars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""
This script will server backends for all Alternative Bars
"""
import os
from typing import Union
import csv
import asyncio
import numpy as np
import pandas as pd
from connection import Client
conn = Client().connect()
class EventDrivenBars:
def __init__(self, bar_type: str, threshold: int, savefile: str):
"""
This is a base class for generating EventDrivenBars.
:param bar_type :(str) Type of bar to form. Either "tick_bar", "volume_bar" or "dollar_bar"
:param threshold :(int) threshold value for sampling.
:param savefile :(str) the path to store the bars as CSV.
"""
# initialize the threshold and savefile
self.threshold = threshold
self.save_file = savefile
# a variable to store the previous trade price
self.prev_price = None
# store price volume and trade_side
self.price, self.volume, self.trade_side = [], [], []
# aggregated values count (cumulative metrics)
self.cum_count = {
'cum_tick': 0,
'cum_volume': 0,
'cum_dollar_value': 0,
'cum_buy_tick': 0,
'cum_buy_volume': 0,
'cum_buy_dollar_value': 0}
# setting tracking metric
if bar_type == 'dollar_bar':
self.stat = 'cum_dollar_value'
elif bar_type == 'volume_bar':
self.stat = 'cum_volume'
elif bar_type == 'tick_bar':
self.stat = 'cum_tick'
else:
raise ValueError(
f'{bar_type} is not a valid bar. Please enter either "dollar_bar","volume_bar" or "tick_bar"')
def _reset_cache(self):
"""
A function to reset the aggregated values and variables.
"""
self.cum_count = {
'cum_tick': 0,
'cum_volume': 0,
'cum_dollar_value': 0,
'cum_buy_tick': 0,
'cum_buy_volume': 0,
'cum_buy_dollar_value': 0}
self.price, self.volume, self.trade_side = [], [], []
def _check_tick_sign(self, price: float):
"""
A function to calculate the side of the trade based on tick rule.
:param price :(float) current price.
"""
if self.prev_price is None:
self.prev_price = price
return 0
# sign of the change or difference from LTP
sign = np.sign(price - self.prev_price)
self.prev_price = price
return sign
def save_bar(self, bar: list):
"""
Append the bars to the CSV using pandas.
:param bar :(list) the dictionary of a bar containing the aggregated values.
"""
# Open file in append mode
with open(self.save_file, 'a+', newline='') as write_obj:
# Create a writer object from csv module
csv_writer = csv.writer(write_obj)
# Add contents of list as last row in the csv file
csv_writer.writerow(bar)
def aggregate_bar(self, data):
"""
Aggregate with the arrival of new trades data
:param data : A data object containing the ticks of a single timestamp or tick.
"""
self.cum_count['cum_tick'] += 1
self.cum_count['cum_volume'] += data.size
self.cum_count['cum_dollar_value'] += data.price * data.size
self.price.append(data.price)
self.volume.append(data.size)
# check the side of the trade
tick_sign = self._check_tick_sign(data.price)
if tick_sign > 0:
self.cum_count['cum_buy_tick'] += 1
self.cum_count['cum_buy_volume'] += data.size
self.cum_count['cum_buy_dollar_value'] += data.price * data.size
if self.cum_count[self.stat] >= self.threshold:
vwap = np.multiply(self.price, self.volume).sum() / \
sum(self.volume) # getting the vwap
bar = {
'timestamp': str(
data.timestamp), "symbol": data.symbol, 'open': self.price[0], 'high': max(
self.price), 'low': min(
self.price), 'close': data.price, 'vwap': vwap}
# join the cumulative metrics to the bar
bar.update(self.cum_count)
# save the bar
self.save_bar(list(bar.values()))
self._reset_cache()
return bar
return False
def get_bars(bar_type: str,
symbols: Union[str,
list],
threshold: Union[int,
dict],
save_to: str):
"""
Get the realtime bar using the Streaming API.
:param bar_type :(str) Type of bar to form. Either "tick_bar", "volume_bar" or "dollar_bar".
:param symbols :(str or list) a ticker symbol or a list of ticker symbols to generate the bars.
:param threshold :(int or dict) threshold for bar formation or sampling. A dictionary must be
given if bars to generated for multiple symbols. The dictionary keys are
ticker symbols and values are the thresholds respectively.
:param save_to :(str) the path to store the bars.
"""
# create a save file and a directory structure
save_to = save_to + '/' + bar_type
if not os.path.exists(save_to):
os.makedirs(save_to)
# the file path and name
save_to = save_to + '/' + 'realtime.csv'
# check if the file exist
if not os.path.exists(save_to):
# write the header of the CSV file
with open(save_to, 'w', newline='') as f:
# the header
header_ = [
'timestamp',
'symbol',
'open',
'high',
'low',
'close',
'vwap',
'cum_tick',
'cum_volume',
'cum_dollar_value',
'cum_buy_tick',
'cum_buy_volume',
'cum_buy_dollar_value']
# Create a writer object from csv module
csv_writer = csv.writer(f)
# Add contents of list as last row in the csv file
csv_writer.writerow(header_)
# if it the file exists then we will append the bars to the same file.
# initiate instances of symbols
instances = {}
if isinstance(symbols, list):
# multi-symbol
channels = ['trade_updates'] + ['T.' + sym.upper() for sym in symbols]
for symbol in symbols:
# create a seperate instance for each symbols
instances[symbol] = EventDrivenBars(
bar_type, threshold[symbol], save_to)
else:
# single symbols
channels = ['trade_updates', f'T.{symbols.upper()}']
if isinstance(threshold, int):
# threshold is given as a int type
instances[symbols] = EventDrivenBars(bar_type, threshold, save_to)
elif isinstance(threshold, dict):
# threshold is given as a dict type
instances[symbols] = EventDrivenBars(
bar_type, threshold[symbol], save_to)
else:
raise TypeError(
f'The given threshold is a {type(threshold)} expecting a int or a dict')
@conn.on(r'T$')
async def on_trade(conn, channel, data):
if data.symbol in instances and data.price > 0 and data.size > 0:
bar = instances[data.symbol].aggregate_bar(data)
print(bar)
conn.run(channels)
def get_tick_bars(symbols: Union[str, list],
threshold: Union[int, dict], save_to: str):
"""
Get RealTime Tick Bars.
:param symbols :(str or list) a ticker symbol or a list of ticker symbols to generate the bars.
:param threshold :(int or dict) threshold for bar formation or sampling. A dictionary must be
given if bars to generated for multiple symbols. The dictionary keys are
ticker symbols and values are the thresholds respectively.
:param save_to :(str) the path to store the bars.
:return :(None)
"""
get_bars('tick_bar', symbols, threshold, save_to)
def get_volume_bars(symbols: Union[str, list],
threshold: Union[int, dict], save_to: str):
"""
Get RealTime Volume Bars.
:param symbols :(str or list) a ticker symbol or a list of ticker symbols to generate the bars.
:param threshold :(int or dict) threshold for bar formation or sampling. A dictionary must be
given if bars to generated for multiple symbols. The dictionary keys are
ticker symbols and values are the thresholds respectively.
:param save_to :(str) the path to store the bars.
"""
get_bars('volume_bar', symbols, threshold, save_to)
def get_dollar_bars(symbols: Union[str, list],
threshold: Union[int, dict], save_to: str):
"""
Get RealTime Dollar Bars.
:param symbols :(str or list) a ticker symbol or a list of ticker symbols to generate the bars.
:param threshold :(int or dict) threshold for bar formation or sampling. A dictionary must be
given if bars to generated for multiple symbols. The dictionary keys are
ticker symbols and values are the thresholds respectively.
:param save_to :(str) the path to store the bars.
"""
get_bars('dollar_bar', symbols, threshold, save_to)