forked from yangxy/GPEN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_simple.py
414 lines (306 loc) · 12.8 KB
/
train_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
'''
This is a simplified training code of GPEN. It achieves comparable performance as in the paper.
@Created by rosinality
@Modified by yangxy ([email protected])
'''
import argparse
import math
import random
import os
import cv2
import glob
from tqdm import tqdm
import torch
from torch import nn, autograd, optim
from torch.nn import functional as F
from torch.utils import data
import torch.distributed as dist
from torchvision import transforms, utils
import __init_paths
from training.data_loader.dataset_face import FaceDataset
from face_model.gpen_model import FullGenerator, Discriminator
from training.loss.id_loss import IDLoss
from distributed import (
get_rank,
synchronize,
reduce_loss_dict,
reduce_sum,
get_world_size,
)
from training import lpips
def data_sampler(dataset, shuffle, distributed):
if distributed:
return data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return data.RandomSampler(dataset)
else:
return data.SequentialSampler(dataset)
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def accumulate(model1, model2, decay=0.999):
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(1 - decay, par2[k].data)
def sample_data(loader):
while True:
for batch in loader:
yield batch
def d_logistic_loss(real_pred, fake_pred):
real_loss = F.softplus(-real_pred)
fake_loss = F.softplus(fake_pred)
return real_loss.mean() + fake_loss.mean()
def d_r1_loss(real_pred, real_img):
grad_real, = autograd.grad(
outputs=real_pred.sum(), inputs=real_img, create_graph=True
)
grad_penalty = grad_real.pow(2).view(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def g_nonsaturating_loss(fake_pred, loss_funcs=None, fake_img=None, real_img=None, input_img=None):
smooth_l1_loss, id_loss = loss_funcs
loss = F.softplus(-fake_pred).mean()
loss_l1 = smooth_l1_loss(fake_img, real_img)
loss_id, __, __ = id_loss(fake_img, real_img, input_img)
loss += 1.0*loss_l1 + 1.0*loss_id
return loss
def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01):
noise = torch.randn_like(fake_img) / math.sqrt(
fake_img.shape[2] * fake_img.shape[3]
)
grad, = autograd.grad(
outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True
)
path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1))
path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length)
path_penalty = (path_lengths - path_mean).pow(2).mean()
return path_penalty, path_mean.detach(), path_lengths
def validation(model, lpips_func, args, device):
lq_files = sorted(glob.glob(os.path.join(args.val_dir, 'lq', '*.*')))
hq_files = sorted(glob.glob(os.path.join(args.val_dir, 'hq', '*.*')))
assert len(lq_files) == len(hq_files)
dist_sum = 0
model.eval()
for lq_f, hq_f in zip(lq_files, hq_files):
img_lq = cv2.imread(lq_f, cv2.IMREAD_COLOR)
img_t = torch.from_numpy(img_lq).to(device).permute(2, 0, 1).unsqueeze(0)
img_t = (img_t/255.-0.5)/0.5
img_t = F.interpolate(img_t, (args.size, args.size))
img_t = torch.flip(img_t, [1])
with torch.no_grad():
img_out, __ = model(img_t)
img_hq = lpips.im2tensor(lpips.load_image(hq_f)).to(device)
img_hq = F.interpolate(img_hq, (args.size, args.size))
dist_sum += lpips_func.forward(img_out, img_hq)
return dist_sum.data/len(lq_files)
def train(args, loader, generator, discriminator, losses, g_optim, d_optim, g_ema, lpips_func, device):
loader = sample_data(loader)
pbar = range(0, args.iter)
if get_rank() == 0:
pbar = tqdm(pbar, initial=args.start_iter, dynamic_ncols=True, smoothing=0.01)
mean_path_length = 0
d_loss_val = 0
r1_loss = torch.tensor(0.0, device=device)
g_loss_val = 0
path_loss = torch.tensor(0.0, device=device)
path_lengths = torch.tensor(0.0, device=device)
mean_path_length_avg = 0
loss_dict = {}
if args.distributed:
g_module = generator.module
d_module = discriminator.module
else:
g_module = generator
d_module = discriminator
accum = 0.5 ** (32 / (10 * 1000))
for idx in pbar:
i = idx + args.start_iter
if i > args.iter:
print('Done!')
break
degraded_img, real_img = next(loader)
degraded_img = degraded_img.to(device)
real_img = real_img.to(device)
requires_grad(generator, False)
requires_grad(discriminator, True)
fake_img, _ = generator(degraded_img)
fake_pred = discriminator(fake_img)
real_pred = discriminator(real_img)
d_loss = d_logistic_loss(real_pred, fake_pred)
loss_dict['d'] = d_loss
loss_dict['real_score'] = real_pred.mean()
loss_dict['fake_score'] = fake_pred.mean()
discriminator.zero_grad()
d_loss.backward()
d_optim.step()
d_regularize = i % args.d_reg_every == 0
if d_regularize:
real_img.requires_grad = True
real_pred = discriminator(real_img)
r1_loss = d_r1_loss(real_pred, real_img)
discriminator.zero_grad()
(args.r1 / 2 * r1_loss * args.d_reg_every + 0 * real_pred[0]).backward()
d_optim.step()
loss_dict['r1'] = r1_loss
requires_grad(generator, True)
requires_grad(discriminator, False)
fake_img, _ = generator(degraded_img)
fake_pred = discriminator(fake_img)
g_loss = g_nonsaturating_loss(fake_pred, losses, fake_img, real_img, degraded_img)
loss_dict['g'] = g_loss
generator.zero_grad()
g_loss.backward()
g_optim.step()
g_regularize = i % args.g_reg_every == 0
if g_regularize:
path_batch_size = max(1, args.batch // args.path_batch_shrink)
fake_img, latents = generator(degraded_img, return_latents=True)
path_loss, mean_path_length, path_lengths = g_path_regularize(
fake_img, latents, mean_path_length
)
generator.zero_grad()
weighted_path_loss = args.path_regularize * args.g_reg_every * path_loss
if args.path_batch_shrink:
weighted_path_loss += 0 * fake_img[0, 0, 0, 0]
weighted_path_loss.backward()
g_optim.step()
mean_path_length_avg = (
reduce_sum(mean_path_length).item() / get_world_size()
)
loss_dict['path'] = path_loss
loss_dict['path_length'] = path_lengths.mean()
accumulate(g_ema, g_module, accum)
loss_reduced = reduce_loss_dict(loss_dict)
d_loss_val = loss_reduced['d'].mean().item()
g_loss_val = loss_reduced['g'].mean().item()
r1_val = loss_reduced['r1'].mean().item()
path_loss_val = loss_reduced['path'].mean().item()
real_score_val = loss_reduced['real_score'].mean().item()
fake_score_val = loss_reduced['fake_score'].mean().item()
path_length_val = loss_reduced['path_length'].mean().item()
if get_rank() == 0:
pbar.set_description(
(
f'd: {d_loss_val:.4f}; g: {g_loss_val:.4f}; r1: {r1_val:.4f}; '
)
)
if i % args.save_freq == 0:
with torch.no_grad():
g_ema.eval()
sample, _ = g_ema(degraded_img)
sample = torch.cat((degraded_img, sample, real_img), 0)
utils.save_image(
sample,
f'{args.sample}/{str(i).zfill(6)}.png',
nrow=args.batch,
normalize=True,
range=(-1, 1),
)
lpips_value = validation(g_ema, lpips_func, args, device)
print(f'{i}/{args.iter}: lpips: {lpips_value.cpu().numpy()[0][0][0][0]}')
if i and i % args.save_freq == 0:
torch.save(
{
'g': g_module.state_dict(),
'd': d_module.state_dict(),
'g_ema': g_ema.state_dict(),
'g_optim': g_optim.state_dict(),
'd_optim': d_optim.state_dict(),
},
f'{args.ckpt}/{str(i).zfill(6)}.pth',
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, required=True)
parser.add_argument('--base_dir', type=str, default='./')
parser.add_argument('--iter', type=int, default=4000000)
parser.add_argument('--batch', type=int, default=4)
parser.add_argument('--size', type=int, default=256)
parser.add_argument('--channel_multiplier', type=int, default=2)
parser.add_argument('--narrow', type=float, default=1.0)
parser.add_argument('--r1', type=float, default=10)
parser.add_argument('--path_regularize', type=float, default=2)
parser.add_argument('--path_batch_shrink', type=int, default=2)
parser.add_argument('--d_reg_every', type=int, default=16)
parser.add_argument('--g_reg_every', type=int, default=4)
parser.add_argument('--save_freq', type=int, default=10000)
parser.add_argument('--lr', type=float, default=0.002)
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--ckpt', type=str, default='ckpts')
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--sample', type=str, default='sample')
parser.add_argument('--val_dir', type=str, default='val')
args = parser.parse_args()
os.makedirs(args.ckpt, exist_ok=True)
os.makedirs(args.sample, exist_ok=True)
device = 'cuda'
n_gpu = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
args.distributed = n_gpu > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
synchronize()
args.latent = 512
args.n_mlp = 8
args.start_iter = 0
generator = FullGenerator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier, narrow=args.narrow, device=device
).to(device)
discriminator = Discriminator(
args.size, channel_multiplier=args.channel_multiplier, narrow=args.narrow, device=device
).to(device)
g_ema = FullGenerator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier, narrow=args.narrow, device=device
).to(device)
g_ema.eval()
accumulate(g_ema, generator, 0)
g_reg_ratio = args.g_reg_every / (args.g_reg_every + 1)
d_reg_ratio = args.d_reg_every / (args.d_reg_every + 1)
g_optim = optim.Adam(
generator.parameters(),
lr=args.lr * g_reg_ratio,
betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),
)
d_optim = optim.Adam(
discriminator.parameters(),
lr=args.lr * d_reg_ratio,
betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
)
if args.pretrain is not None:
print('load model:', args.pretrain)
ckpt = torch.load(args.pretrain)
generator.load_state_dict(ckpt['g'])
discriminator.load_state_dict(ckpt['d'])
g_ema.load_state_dict(ckpt['g_ema'])
g_optim.load_state_dict(ckpt['g_optim'])
d_optim.load_state_dict(ckpt['d_optim'])
smooth_l1_loss = torch.nn.SmoothL1Loss().to(device)
id_loss = IDLoss(args.base_dir, device, ckpt_dict=None)
lpips_func = lpips.LPIPS(net='alex',version='0.1').to(device)
if args.distributed:
generator = nn.parallel.DistributedDataParallel(
generator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
discriminator = nn.parallel.DistributedDataParallel(
discriminator,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
id_loss = nn.parallel.DistributedDataParallel(
id_loss,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
dataset = FaceDataset(args.path, args.size)
loader = data.DataLoader(
dataset,
batch_size=args.batch,
sampler=data_sampler(dataset, shuffle=True, distributed=args.distributed),
drop_last=True,
)
train(args, loader, generator, discriminator, [smooth_l1_loss, id_loss], g_optim, d_optim, g_ema, lpips_func, device)