forked from lazyprogrammer/machine_learning_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
knn_dt_demo.py
152 lines (114 loc) · 4.17 KB
/
knn_dt_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# https://deeplearningcourses.com/c/machine-learning-in-python-random-forest-adaboost
# https://www.udemy.com/machine-learning-in-python-random-forest-adaboost
from __future__ import print_function, division
from builtins import range, input
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
from sklearn.utils import shuffle
N = 20
Ntrain = 12
# create the data
X = np.linspace(0, 2*np.pi, N).reshape(N, 1)
Y = np.sin(3*X)
X, Y = shuffle(X, Y)
Xtrain = X[:Ntrain]
Ytrain = Y[:Ntrain]
# decision tree - low bias, high variance
model = DecisionTreeRegressor() # default max_depth=None
model.fit(Xtrain, Ytrain)
T = 50
Xaxis = np.linspace(0, 2*np.pi, T)
Yaxis = np.sin(3*Xaxis)
plt.scatter(Xtrain, Ytrain, s=50, alpha=0.7, c='blue')
plt.scatter(Xtrain, model.predict(Xtrain.reshape(Ntrain, 1)), s=50, alpha=0.7, c='green')
plt.title("decision tree - low bias, high variance")
# plt.show()
# plt.scatter(X, Y)
# plt.scatter(X, model.predict(X.reshape(N, 1)))
# plt.show()
plt.plot(Xaxis, Yaxis)
plt.plot(Xaxis, model.predict(Xaxis.reshape(T, 1)))
plt.show()
# decision tree - high bias, low variance
model = DecisionTreeRegressor(max_depth=1)
model.fit(Xtrain, Ytrain)
plt.scatter(Xtrain, Ytrain, s=50, alpha=0.7, c='blue')
plt.scatter(Xtrain, model.predict(Xtrain.reshape(Ntrain, 1)), s=50, alpha=0.7, c='green')
plt.plot(Xaxis, Yaxis)
plt.plot(Xaxis, model.predict(Xaxis.reshape(T, 1)))
plt.title("decision tree - high bias, low variance")
plt.show()
# knn - low bias, high variance
model = KNeighborsRegressor(n_neighbors=1)
model.fit(Xtrain, Ytrain)
plt.scatter(Xtrain, Ytrain, s=50, alpha=0.7, c='blue')
plt.scatter(Xtrain, model.predict(Xtrain.reshape(Ntrain, 1)), s=50, alpha=0.7, c='green')
plt.plot(Xaxis, Yaxis)
plt.plot(Xaxis, model.predict(Xaxis.reshape(T, 1)))
plt.title("knn - low bias, high variance")
plt.show()
# knn - high bias, low variance
model = KNeighborsRegressor(n_neighbors=10)
model.fit(Xtrain, Ytrain)
plt.scatter(Xtrain, Ytrain, s=50, alpha=0.7, c='blue')
plt.scatter(Xtrain, model.predict(Xtrain.reshape(Ntrain, 1)), s=50, alpha=0.7, c='green')
plt.plot(Xaxis, Yaxis)
plt.plot(Xaxis, model.predict(Xaxis.reshape(T, 1)))
plt.title("knn - high bias, low variance")
plt.show()
# classification
# generate the data
N = 100
D = 2
X = np.random.randn(N, D)
X[:N//2] += np.array([1, 1]) # center it at (1,1)
X[N//2:] += np.array([-1, -1]) # center it at (-1, -1)
Y = np.array([0]*(N//2) + [1]*(N//2))
def plot_decision_boundary(X, model):
h = .02 # step size in the mesh
# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.contour(xx, yy, Z, cmap=plt.cm.Paired)
# look at the data
plt.scatter(X[:,0], X[:,1], s=50, c=Y, alpha=0.7)
plt.show()
# dt - low bias, high variance
model = DecisionTreeClassifier()
model.fit(X, Y)
plt.scatter(X[:,0], X[:,1], s=50, c=Y, alpha=0.7)
plot_decision_boundary(X, model)
plt.title("dt - low bias, high variance")
plt.show()
# dt - high bias, low variance
model = DecisionTreeClassifier(max_depth=2)
model.fit(X, Y)
plt.scatter(X[:,0], X[:,1], s=50, c=Y, alpha=0.7)
plot_decision_boundary(X, model)
plt.title("dt - high bias, low variance")
plt.show()
# knn - low bias, high variance
model = KNeighborsClassifier(n_neighbors=1)
model.fit(X, Y)
plt.scatter(X[:,0], X[:,1], s=50, c=Y, alpha=0.7)
plot_decision_boundary(X, model)
plt.title("knn - low bias, high variance")
plt.show()
# knn - high bias, low variance
model = KNeighborsClassifier(n_neighbors=20)
model.fit(X, Y)
plt.scatter(X[:,0], X[:,1], s=50, c=Y, alpha=0.7)
plot_decision_boundary(X, model)
plt.title("knn - high bias, low variance")
plt.show()