Skip to content

Latest commit

 

History

History
33 lines (22 loc) · 3.14 KB

File metadata and controls

33 lines (22 loc) · 3.14 KB

MFPT 轴承数据集说明

1.概述

NRG Systems总工程师Eric Bechhoefer博士代表MFPT组装和准备数据。

2.试验说明

3.使用情况

  • Lee D, Siu V, Cruz R, et al. Convolutional neural net and bearing fault analysis[C]//Proceedings of the International Conference on Data Mining (DMIN). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2016: 194.论文链接

  • Lessmeier C, Kimotho J K, Zimmer D, et al. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification[C]//Proceedings of the European conference of the prognostics and health management society. 2016: 05-08.07.论文链接
    利用电机电流信号监测机电传动系统轴承损坏情况:数据驱动分类的基准数据集
    对CWRU: Bearing Data Center/ Seeded Fault Test Data,FEMTO Bearing Data Set,MFPT Fault Data Sets,Bearing Data Set IMS四个数据集进行了分析和介绍。

  • Verstraete D, Ferrada A, Droguett E L, et al. Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings[J]. Shock and Vibration, 2017, 2017.论文链接 通过对滚动轴承的时频图像分析深度学习实现了故障诊断

  • Yu H, Wang K, Li Y. Multiscale Representations Fusion With Joint Multiple Reconstructions Autoencoder for Intelligent Fault Diagnosis[J]. IEEE Signal Processing Letters, 2018, 25(12): 1880-1884.论文链接

  • Sobie C, Freitas C, Nicolai M. Simulation-driven machine learning: Bearing fault classification[J]. Mechanical Systems and Signal Processing, 2018, 99: 403-419. 论文链接

  • Li H, Zhao J, Liu J, et al. Application of empirical mode decomposition and Euclidean distance technique for feature selection and fault diagnosis of planetary gearbox[J]. Journal of Vibroengineering, 2016, 18(8).论文链接

  • Barbini L, Ompusunggu A P, Hillis A J, et al. Phase editing as a signal pre-processing step for automated bearing fault detection[J]. Mechanical Systems and Signal Processing, 2017, 91: 407-421.论文链接

4.数据特点

<<返回主目录