Skip to content

HelloRio/WantWords

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

|En

WantWords Logo

An open-source online reverse dictionary

What Is a Reverse Dictionary?

Opposite to a regular (forward) dictionary that provides definitions for query words, a reverse dictionary returns words semantically matching the query descriptions.

rd_example

What Can a Reverse Dictionary Do?

  • Solve the tip-of-the-tongue problem, the phenomenon of failing to retrieve a word from memory
  • Help new language learners
  • Help word selection (or word dictionary) anomia patients, people who can recognize and describe an object but fail to name it due to neurological disorder

Our System

Workflow

workflow

Core Model

The core model of WantWords is based on our proposed Multi-channel Reverse Dictionary Model [paper] [code], as illustrate in the following figure.

model

Key Requirements

  • Django==2.2.5
  • django-cors-headers==3.5.0
  • numpy==1.17.2
  • pytorch-transformers==1.2.0
  • requests==2.22.0
  • scikit-learn==0.22.1
  • scipy==1.4.1
  • thulac==0.2.0
  • torch==1.2.0
  • urllib3==1.25.6
  • uWSGI==2.0.18
  • uwsgitop==0.11

Cite

If the code or data help you, please cite the following two papers.

@inproceedings{qi2020wantwords,
  title={WantWords: An Open-source Online Reverse Dictionary System},
  author={Qi, Fanchao and Zhang, Lei and Yang, Yanhui and Liu, Zhiyuan and Sun, Maosong},
  booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
  pages={175--181},
  year={2020}
}

@inproceedings{zhang2020multi,
  title={Multi-channel reverse dictionary model},
  author={Zhang, Lei and Qi, Fanchao and Liu, Zhiyuan and Wang, Yasheng and Liu, Qun and Sun, Maosong},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  pages={312--319},
  year={2020}
}

About

An open-source online reverse dictionary.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • JavaScript 43.2%
  • HTML 39.8%
  • Python 16.6%
  • CSS 0.4%