forked from eembc/coremark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcore_state.c
330 lines (309 loc) · 9.48 KB
/
core_state.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/*
Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Original Author: Shay Gal-on
*/
#include "coremark.h"
/* local functions */
enum CORE_STATE core_state_transition(ee_u8 **instr, ee_u32 *transition_count);
/*
Topic: Description
Simple state machines like this one are used in many embedded products.
For more complex state machines, sometimes a state transition table
implementation is used instead, trading speed of direct coding for ease of
maintenance.
Since the main goal of using a state machine in CoreMark is to excercise
the switch/if behaviour, we are using a small moore machine.
In particular, this machine tests type of string input,
trying to determine whether the input is a number or something else.
(see core_state.png).
*/
/* Function: core_bench_state
Benchmark function
Go over the input twice, once direct, and once after introducing some
corruption.
*/
ee_u16
core_bench_state(ee_u32 blksize,
ee_u8 *memblock,
ee_s16 seed1,
ee_s16 seed2,
ee_s16 step,
ee_u16 crc)
{
ee_u32 final_counts[NUM_CORE_STATES];
ee_u32 track_counts[NUM_CORE_STATES];
ee_u8 *p = memblock;
ee_u32 i;
#if CORE_DEBUG
ee_printf("State Bench: %d,%d,%d,%04x\n", seed1, seed2, step, crc);
#endif
for (i = 0; i < NUM_CORE_STATES; i++)
{
final_counts[i] = track_counts[i] = 0;
}
/* run the state machine over the input */
while (*p != 0)
{
enum CORE_STATE fstate = core_state_transition(&p, track_counts);
final_counts[fstate]++;
#if CORE_DEBUG
ee_printf("%d,", fstate);
}
ee_printf("\n");
#else
}
#endif
p = memblock;
while (p < (memblock + blksize))
{ /* insert some corruption */
if (*p != ',')
*p ^= (ee_u8)seed1;
p += step;
}
p = memblock;
/* run the state machine over the input again */
while (*p != 0)
{
enum CORE_STATE fstate = core_state_transition(&p, track_counts);
final_counts[fstate]++;
#if CORE_DEBUG
ee_printf("%d,", fstate);
}
ee_printf("\n");
#else
}
#endif
p = memblock;
while (p < (memblock + blksize))
{ /* undo corruption is seed1 and seed2 are equal */
if (*p != ',')
*p ^= (ee_u8)seed2;
p += step;
}
/* end timing */
for (i = 0; i < NUM_CORE_STATES; i++)
{
crc = crcu32(final_counts[i], crc);
crc = crcu32(track_counts[i], crc);
}
return crc;
}
/* Default initialization patterns */
static ee_u8 *intpat[4]
= { (ee_u8 *)"5012", (ee_u8 *)"1234", (ee_u8 *)"-874", (ee_u8 *)"+122" };
static ee_u8 *floatpat[4] = { (ee_u8 *)"35.54400",
(ee_u8 *)".1234500",
(ee_u8 *)"-110.700",
(ee_u8 *)"+0.64400" };
static ee_u8 *scipat[4] = { (ee_u8 *)"5.500e+3",
(ee_u8 *)"-.123e-2",
(ee_u8 *)"-87e+832",
(ee_u8 *)"+0.6e-12" };
static ee_u8 *errpat[4] = { (ee_u8 *)"T0.3e-1F",
(ee_u8 *)"-T.T++Tq",
(ee_u8 *)"1T3.4e4z",
(ee_u8 *)"34.0e-T^" };
/* Function: core_init_state
Initialize the input data for the state machine.
Populate the input with several predetermined strings, interspersed.
Actual patterns chosen depend on the seed parameter.
Note:
The seed parameter MUST be supplied from a source that cannot be
determined at compile time
*/
void
core_init_state(ee_u32 size, ee_s16 seed, ee_u8 *p)
{
ee_u32 total = 0, next = 0, i;
ee_u8 *buf = 0;
#if CORE_DEBUG
ee_u8 *start = p;
ee_printf("State: %d,%d\n", size, seed);
#endif
size--;
next = 0;
while ((total + next + 1) < size)
{
if (next > 0)
{
for (i = 0; i < next; i++)
*(p + total + i) = buf[i];
*(p + total + i) = ',';
total += next + 1;
}
seed++;
switch (seed & 0x7)
{
case 0: /* int */
case 1: /* int */
case 2: /* int */
buf = intpat[(seed >> 3) & 0x3];
next = 4;
break;
case 3: /* float */
case 4: /* float */
buf = floatpat[(seed >> 3) & 0x3];
next = 8;
break;
case 5: /* scientific */
case 6: /* scientific */
buf = scipat[(seed >> 3) & 0x3];
next = 8;
break;
case 7: /* invalid */
buf = errpat[(seed >> 3) & 0x3];
next = 8;
break;
default: /* Never happen, just to make some compilers happy */
break;
}
}
size++;
while (total < size)
{ /* fill the rest with 0 */
*(p + total) = 0;
total++;
}
#if CORE_DEBUG
ee_printf("State Input: %s\n", start);
#endif
}
static ee_u8
ee_isdigit(ee_u8 c)
{
ee_u8 retval;
retval = ((c >= '0') & (c <= '9')) ? 1 : 0;
return retval;
}
/* Function: core_state_transition
Actual state machine.
The state machine will continue scanning until either:
1 - an invalid input is detected.
2 - a valid number has been detected.
The input pointer is updated to point to the end of the token, and the
end state is returned (either specific format determined or invalid).
*/
enum CORE_STATE
core_state_transition(ee_u8 **instr, ee_u32 *transition_count)
{
ee_u8 * str = *instr;
ee_u8 NEXT_SYMBOL;
enum CORE_STATE state = CORE_START;
for (; *str && state != CORE_INVALID; str++)
{
NEXT_SYMBOL = *str;
if (NEXT_SYMBOL == ',') /* end of this input */
{
str++;
break;
}
switch (state)
{
case CORE_START:
if (ee_isdigit(NEXT_SYMBOL))
{
state = CORE_INT;
}
else if (NEXT_SYMBOL == '+' || NEXT_SYMBOL == '-')
{
state = CORE_S1;
}
else if (NEXT_SYMBOL == '.')
{
state = CORE_FLOAT;
}
else
{
state = CORE_INVALID;
transition_count[CORE_INVALID]++;
}
transition_count[CORE_START]++;
break;
case CORE_S1:
if (ee_isdigit(NEXT_SYMBOL))
{
state = CORE_INT;
transition_count[CORE_S1]++;
}
else if (NEXT_SYMBOL == '.')
{
state = CORE_FLOAT;
transition_count[CORE_S1]++;
}
else
{
state = CORE_INVALID;
transition_count[CORE_S1]++;
}
break;
case CORE_INT:
if (NEXT_SYMBOL == '.')
{
state = CORE_FLOAT;
transition_count[CORE_INT]++;
}
else if (!ee_isdigit(NEXT_SYMBOL))
{
state = CORE_INVALID;
transition_count[CORE_INT]++;
}
break;
case CORE_FLOAT:
if (NEXT_SYMBOL == 'E' || NEXT_SYMBOL == 'e')
{
state = CORE_S2;
transition_count[CORE_FLOAT]++;
}
else if (!ee_isdigit(NEXT_SYMBOL))
{
state = CORE_INVALID;
transition_count[CORE_FLOAT]++;
}
break;
case CORE_S2:
if (NEXT_SYMBOL == '+' || NEXT_SYMBOL == '-')
{
state = CORE_EXPONENT;
transition_count[CORE_S2]++;
}
else
{
state = CORE_INVALID;
transition_count[CORE_S2]++;
}
break;
case CORE_EXPONENT:
if (ee_isdigit(NEXT_SYMBOL))
{
state = CORE_SCIENTIFIC;
transition_count[CORE_EXPONENT]++;
}
else
{
state = CORE_INVALID;
transition_count[CORE_EXPONENT]++;
}
break;
case CORE_SCIENTIFIC:
if (!ee_isdigit(NEXT_SYMBOL))
{
state = CORE_INVALID;
transition_count[CORE_INVALID]++;
}
break;
default:
break;
}
}
*instr = str;
return state;
}