forked from EbTech/rust-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mod.rs
180 lines (166 loc) · 4.63 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
//! Number-theoretic utilities for contest problems.
pub mod fft;
pub mod num;
/// Finds (d, coef_a, coef_b) such that d = gcd(a, b) = a * coef_a + b * coef_b.
pub fn extended_gcd(a: i64, b: i64) -> (i64, i64, i64) {
if b == 0 {
(a.abs(), a.signum(), 0)
} else {
let (d, coef_b, coef_a) = extended_gcd(b, a % b);
(d, coef_a, coef_b - coef_a * (a / b))
}
}
/// Assuming a != 0, finds smallest coef_b >= 0 such that a * coef_a + b * coef_b = c.
///
/// # Panics
///
/// Panics if a == 0.
pub fn canon_egcd(a: i64, b: i64, c: i64) -> Option<(i64, i64, i64)> {
let (d, _, coef_b_init) = extended_gcd(a, b);
if c % d == 0 {
let a_d = (a / d).abs();
let coef_b = (coef_b_init * (c / d) % a_d + a_d) % a_d;
let coef_a = (c - b * coef_b) / a;
Some((d, coef_a, coef_b))
} else {
None
}
}
// TODO: deduplicate modular arithmetic code with num::Field
fn pos_mod(n: i64, m: i64) -> i64 {
if n < 0 {
n + m
} else {
n
}
}
fn mod_mul(a: i64, b: i64, m: i64) -> i64 {
pos_mod((a as i128 * b as i128 % m as i128) as i64, m)
}
fn mod_exp(mut base: i64, mut exp: u64, m: i64) -> i64 {
assert!(m >= 1);
let mut ans = 1 % m;
base %= m;
while exp > 0 {
if exp % 2 == 1 {
ans = mod_mul(ans, base, m);
}
base = mod_mul(base, base, m);
exp /= 2;
}
pos_mod(ans, m)
}
fn is_strong_probable_prime(n: i64, exp: u64, r: i64, a: i64) -> bool {
let mut x = mod_exp(a, exp, n);
if x == 1 || x == n - 1 {
return true;
}
for _ in 1..r {
x = mod_mul(x, x, n);
if x == n - 1 {
return true;
}
}
false
}
/// Assuming x >= 0, returns whether x is prime
pub fn is_prime(n: i64) -> bool {
const BASES: [i64; 12] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37];
assert!(n >= 0);
match n {
0 | 1 => false,
2 | 3 => true,
_ if n % 2 == 0 => false,
_ => {
let r = (n - 1).trailing_zeros() as i64;
let exp = (n - 1) as u64 >> r;
BASES
.iter()
.all(|&base| base > n - 2 || is_strong_probable_prime(n, exp, r, base))
}
}
}
fn pollard_rho(n: i64) -> i64 {
for a in 1..n {
let f = |x| pos_mod(mod_mul(x, x, n) + a, n);
let mut x = 2;
let mut y = 2;
loop {
x = f(x);
y = f(f(y));
let div = num::fast_gcd(x - y, n);
if div == n {
break;
} else if div > 1 {
return div;
}
}
}
panic!("No divisor found!");
}
/// Assuming x >= 1, finds the prime factorization of n
/// TODO: pollard_rho needs randomization to ensure correctness in contest settings!
pub fn factorize(n: i64) -> Vec<i64> {
assert!(n >= 1);
let r = n.trailing_zeros() as usize;
let mut factors = vec![2; r];
let mut stack = match n >> r {
1 => vec![],
x => vec![x],
};
while let Some(top) = stack.pop() {
if is_prime(top) {
factors.push(top);
} else {
let div = pollard_rho(top);
stack.push(div);
stack.push(top / div);
}
}
factors.sort_unstable();
factors
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_egcd() {
let (a, b) = (14, 35);
let (d, x, y) = extended_gcd(a, b);
assert_eq!(d, 7);
assert_eq!(a * x + b * y, d);
assert_eq!(canon_egcd(a, b, d), Some((d, -2, 1)));
assert_eq!(canon_egcd(b, a, d), Some((d, -1, 3)));
}
#[test]
fn test_modexp() {
let m = 1_000_000_007;
assert_eq!(mod_exp(0, 0, m), 1);
assert_eq!(mod_exp(0, 1, m), 0);
assert_eq!(mod_exp(0, 10, m), 0);
assert_eq!(mod_exp(123, 456, m), 565291922);
}
#[test]
fn test_miller() {
assert_eq!(is_prime(2), true);
assert_eq!(is_prime(4), false);
assert_eq!(is_prime(6), false);
assert_eq!(is_prime(8), false);
assert_eq!(is_prime(269), true);
assert_eq!(is_prime(1000), false);
assert_eq!(is_prime(1_000_000_007), true);
assert_eq!(is_prime((1 << 61) - 1), true);
assert_eq!(is_prime(7156857700403137441), false);
}
#[test]
fn test_pollard() {
assert_eq!(factorize(1), vec![]);
assert_eq!(factorize(2), vec![2]);
assert_eq!(factorize(4), vec![2, 2]);
assert_eq!(factorize(12), vec![2, 2, 3]);
assert_eq!(
factorize(7156857700403137441),
vec![11, 13, 17, 19, 29, 37, 41, 43, 61, 97, 109, 127]
);
}
}