-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
274 lines (229 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import argparse
import os
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler, UNet2DConditionModel
from diffusers_ import StableDiffusionPipeline
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
import numpy as np
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from torch import autocast
from utils import inf_save
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name",
type=str,
default=None,
required=True,
help="model identifier from huggingface.co/models.",
)
parser.add_argument(
"--input_image",
type=str,
default=None,
required=True,
help="Path to input image to edit.",
)
parser.add_argument(
"--target_text",
type=str,
default=None,
help="The target text describing the output image.",
)
parser.add_argument(
"--source_text",
type=str,
default=None,
help="The source text describing the input image.",
)
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
)
parser.add_argument(
"--n_hiper",
type=int,
default=5,
help="Number of hiper embedding",
)
parser.add_argument(
"--emb_train_steps",
type=int,
default=1500,
help="Total number of training steps to perform.",
)
parser.add_argument(
"--emb_learning_rate",
type=float,
default=1e-3,
help="Learning rate for optimizing the embeddings.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--use_8bit_adam", action="store_false", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument(
"--mixed_precision",
type=str,
default="fp16",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
args = parser.parse_args()
return args
def main():
args = parse_args()
# Setting
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
)
if args.seed is not None:
set_seed(args.seed)
g_cuda = torch.Generator(device='cuda')
g_cuda.manual_seed(args.seed)
os.makedirs(args.output_dir, exist_ok=True)
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.Adam8bit
else:
optimizer_class = torch.optim.Adam
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Load pretrained models
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name, subfolder="tokenizer", use_auth_token=True)
CLIP_text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name, subfolder="text_encoder", use_auth_token=True)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name, subfolder="vae", use_auth_token=True)
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name, subfolder="unet", use_auth_token=True)
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
# Encode the input image.
vae.to(accelerator.device, dtype=weight_dtype)
input_image = Image.open(args.input_image).convert("RGB")
image_transforms = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
init_image = image_transforms(input_image)
init_image = init_image[None].to(device=accelerator.device, dtype=weight_dtype)
with torch.inference_mode():
init_latents = vae.encode(init_image).latent_dist.sample()
init_latents = 0.18215 * init_latents
# Encode the source and target text.
CLIP_text_encoder.to(accelerator.device, dtype=weight_dtype)
text_ids_tgt = tokenizer(args.target_text, padding="max_length", truncation=True, max_length=tokenizer.model_max_length, return_tensors="pt").input_ids
text_ids_tgt = text_ids_tgt.to(device=accelerator.device)
text_ids_src = tokenizer(args.source_text,padding="max_length",truncation=True,max_length=tokenizer.model_max_length,return_tensors="pt").input_ids
text_ids_src = text_ids_src.to(device=accelerator.device)
with torch.inference_mode():
target_embeddings = CLIP_text_encoder(text_ids_tgt)[0].float()
source_embeddings = CLIP_text_encoder(text_ids_src)[0].float()
# del vae, CLIP_text_encoder
del vae, CLIP_text_encoder
if torch.cuda.is_available():
torch.cuda.empty_cache()
# For inference
ddim_scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
pipe = StableDiffusionPipeline.from_pretrained(args.pretrained_model_name, scheduler=ddim_scheduler, torch_dtype=torch.float16).to("cuda")
num_samples = 1
guidance_scale = 7.5
num_inference_steps = 50
height = 512
width = 512
# Optimize hiper embedding
n_hiper = args.n_hiper
hiper_embeddings = source_embeddings[:,-n_hiper:].clone().detach()
src_embeddings = source_embeddings[:,:-n_hiper].clone().detach()
tgt_embeddings = target_embeddings[:,:-n_hiper].clone().detach()
hiper_embeddings.requires_grad_(True)
optimizer = optimizer_class(
[hiper_embeddings],
lr=args.emb_learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
eps=args.adam_epsilon,
)
unet, optimizer = accelerator.prepare(unet, optimizer)
def train_loop(pbar, optimizer, hiper_embeddings):
for step in pbar:
with accelerator.accumulate(unet):
noise = torch.randn_like(init_latents)
bsz = init_latents.shape[0]
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=init_latents.device)
timesteps = timesteps.long()
noisy_latents = noise_scheduler.add_noise(init_latents, noise, timesteps)
source_embeddings = torch.cat([src_embeddings, hiper_embeddings], 1)
noise_pred = unet(noisy_latents, timesteps, source_embeddings).sample
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean")
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad(set_to_none=True)
# Check inference
if step%100==0:
inf_emb = []
inf_emb.append(torch.cat([src_embeddings, hiper_embeddings.clone().detach()], 1))
inf_emb.append(torch.cat([tgt_embeddings, hiper_embeddings.clone().detach()*0.8], 1))
inf_emb.append(target_embeddings)
inf_images=[]
inf_images.append(input_image)
with autocast("cuda"), torch.inference_mode():
for i in range(3):
images = pipe(text_embeddings=inf_emb[i], height=height, width=width, num_images_per_prompt=num_samples,
num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=g_cuda).images
inf_images.append(images[0])
save_name = os.path.join(args.output_dir, 'training_results_seed{}_step{}.png'.format(args.seed, step))
inf_save(inf_images, ['source_img', '[src, hper]', '[tgt, hper]', '[tgt]'], save_name)
del images
torch.save(hiper_embeddings.cpu(), os.path.join(args.output_dir, "hiper_embeddings_step{}.pt".format(step)))
accelerator.wait_for_everyone()
progress_bar = tqdm(range(args.emb_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Optimizing embedding")
train_loop(progress_bar, optimizer, hiper_embeddings)
if __name__ == "__main__":
main()