forked from google/skia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFloat16Test.cpp
172 lines (155 loc) · 6.64 KB
/
Float16Test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/base/SkHalf.h"
#include "src/base/SkRandom.h"
#include "src/base/SkVx.h"
#include "tests/Test.h"
#include <cmath>
#include <cstdint>
#include <cstring>
// float = s[31] e[30:23] m[22:0]
static constexpr uint32_t kF32_Sign = 1 << 31;
static constexpr uint32_t kF32_Exp = 255 << 23;
static constexpr uint32_t kF32_Mant = ~(kF32_Sign | kF32_Exp);
static constexpr int kF32_Bias = 127;
// half = s[15] e[14:10] m[9:0]
static constexpr uint32_t kF16_Sign = 1 << 15;
static constexpr uint32_t kF16_Exp = 31 << 10;
static constexpr uint32_t kF16_Mant = ~(kF16_Sign | kF16_Exp);
static constexpr int kF16_Bias = 15;
DEF_TEST(FloatToHalf, r) {
#if 0
// Exhaustive test (slow)
for (uint64_t bits = 0; bits <= 0xffffffff; bits++) {
if (bits % (1 << 24) == 0) {
SkDebugf("progress 0x%08X\n", (int) bits);
}
#else
// Check all 8-bit exponents and all 10-bit upper mantissas, with a combination of all 0s,
// all 1s, and random bits in the remaining 13 fractional mantissa bits.
static constexpr int kTestCount = /*sign*/2 * /*exp*/255 * /*man*/1024 * /*frac*/8;
SkRandom rand;
for (int i = 0; i < kTestCount; ++i) {
uint32_t sign = (i & 1) << 31;
uint32_t exp = ((i >> 1) & 255) << 23;
uint32_t man = ((i >> 9) & 1023) << 13;
uint32_t frac = ((i >> 19) & 7); // 0 and 1 are special, 6 other values are random bits
uint64_t bits = sign | exp | man | ((frac == 0) ? 0 : // all 0s in lost fraction
(frac == 1) ? (1 << 13) - 1 // all 1s in lost fraction
: rand.nextBits(13)); // random lost bits
#endif
float f = SkBits2Float(bits);
if (SkIsNaN(f)) {
#ifndef SK_DEBUG
// We want float->half and half->float to play well with infinities and max
// representable values in the 16-bit precision, but NaNs should have been caught ahead
// of time, so the conversion logic is allowed to convert them to infinities in release
// builds. We skip calling `to_half` in debug since it asserts that NaN isn't passed in.
uint16_t actual2 = to_half(skvx::float2{f})[0];
uint16_t actual4 = to_half(skvx::float4{f})[0];
REPORTER_ASSERT(r, (actual2 & kF16_Exp) == kF16_Exp);
REPORTER_ASSERT(r, (actual4 & kF16_Exp) == kF16_Exp);
#endif
continue;
}
uint32_t s32 = (uint32_t) bits & kF32_Sign;
uint32_t e32 = (uint32_t) bits & kF32_Exp;
uint32_t m32 = (uint32_t) bits & kF32_Mant;
// Half floats can represent a real exponent from -14 to 15. Anything less than that would
// need to be a denorm, which is flushed to zero, or overflows and becomes infinity.
int e = (int) (e32 >> 23) - kF32_Bias; // the true signed exponent
uint32_t s16 = s32 >> 16;
uint32_t e16;
uint32_t m16;
if (e < -kF16_Bias-10 || (e == -kF16_Bias-10 && m32 <= 0)) {
// Rounds to zero
e16 = 0;
m16 = 0;
} else if ((e32 | m32) < 0x38fe'0000) {
// A subnormal non-zero f16 value
e16 = 0;
m16 = 0xffff & sk_bit_cast<uint32_t>(0.5f + SkBits2Float(e32 | m32));
} else if ((e32 | m32) < 0x3880'0000) {
// Rounds up to smallest normal f16 (2^-14)
e16 = 1;
m16 = 0;
} else if (e > kF16_Bias) {
// Either f32 infinity or a value larger than what rounds down to the max normal half.
e16 = kF16_Exp;
m16 = 0;
} else {
// A normal half value, which is rounded towards nearest even.
e16 = (uint32_t) (e + kF16_Bias) << 10;
SkASSERT((e16 & ~kF16_Exp) == 0);
// round to nearest even
m32 += 0xfff + ((m32>>13)&1);
if (m32 > kF32_Mant) {
// overflow
e16 += (1 << 10);
m16 = 0;
} else {
m16 = m32 >> 13;
}
}
// Expected conversion from f32 to f16
uint16_t expected = s16 | e16 | m16;
uint16_t actual2 = to_half(skvx::float2{f})[0];
uint16_t actual4 = to_half(skvx::float4{f})[0];
REPORTER_ASSERT(r, expected == actual2);
REPORTER_ASSERT(r, expected == actual4);
}
}
DEF_TEST(FloatToHalf_Constants, r) {
auto to_half = [](float f) { return skvx::to_half(skvx::float4{f})[0]; };
REPORTER_ASSERT(r, 0 == to_half(0.f));
REPORTER_ASSERT(r, kF16_Sign == to_half(-0.f));
REPORTER_ASSERT(r, SK_Half1 == to_half(1.f));
REPORTER_ASSERT(r, (kF16_Sign | SK_Half1) == to_half(-1.f));
REPORTER_ASSERT(r, SK_HalfMax == to_half(65504.f));
REPORTER_ASSERT(r, SK_HalfMin == to_half(1.f / (1 << 14)));
}
DEF_TEST(HalfToFloat, r) {
for (uint32_t bits = 0; bits <= 0xffff; bits++) {
uint32_t s16 = bits & kF16_Sign;
uint32_t e16 = bits & kF16_Exp;
uint32_t m16 = bits & kF16_Mant;
float actual2 = from_half(skvx::half2{(uint16_t) bits})[0];
float actual4 = from_half(skvx::half4{(uint16_t) bits})[0];
if (e16 == 0) {
// De-normal f16 or a zero = 2^-14 * 0.[m16] = 2^-14 * 2^-10 * [m16].0
float expected = (1.f / (1 << 14)) * (1.f / (1 << 10)) * m16;
if (s16 != 0) {
expected *= -1.f;
}
REPORTER_ASSERT(r, actual2 == expected);
REPORTER_ASSERT(r, actual4 == expected);
} else if (e16 == kF16_Exp) {
if (m16 != 0) {
// A NaN stays NaN
REPORTER_ASSERT(r, SkIsNaN(actual2));
REPORTER_ASSERT(r, SkIsNaN(actual4));
} else {
// +/- infinity stays infinite
if (s16) {
REPORTER_ASSERT(r, actual2 == SK_ScalarNegativeInfinity);
REPORTER_ASSERT(r, actual4 == SK_ScalarNegativeInfinity);
} else {
REPORTER_ASSERT(r, actual2 == SK_ScalarInfinity);
REPORTER_ASSERT(r, actual4 == SK_ScalarInfinity);
}
}
} else {
// A normal f16 is exactly representable in f32
uint32_t s32 = s16 << 16;
uint32_t e32 = ((e16 >> 10) + kF32_Bias - kF16_Bias) << 23;
uint32_t m32 = m16 << 13;
float expected = SkBits2Float(s32 | e32 | m32);
REPORTER_ASSERT(r, actual2 == expected);
REPORTER_ASSERT(r, actual4 == expected);
}
}
}