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Introduction

The mini-project focuses on practical implementation. We encourage you to investigate an optimization algorithm
for a real-life machine learning application and gain insight into that algorithm. You should provide empirical
evidence for the behavior of your chosen optimization algorithm or modification. The studied behavior could be
discussed in class or not and could be desirable or undesirable. The optimization algorithms can be anything of
your choice. Don’t be scared to try variants not seen in class, as the project’s focus is not on theory. You can
also choose any relevant ML application. It does not matter if it is deep learning, linear models, random forests,
reinforcement learning or something else.

In other words, your report should look like the “Experiments”-Section of an ICML, NIPS or ICLR machine
learning paper. You are not asked to invent new algorithms or convergence theory, but only to extend knowledge
and insights about their experimental performance and behaviour, and possibly interpret this in the light of existing
theory.

Grading. The project is done in groups of 3 students. It will count 25% to the final grade. Project reports (3
page PDF) and code are due June 17th.

Topic Examples

The list below is by no means exhaustive. You are encouraged to freely chose very different aspects and topics as
long as they concern optimization and as long as you study them for any ML-relevant application.

• Local minima for deep learning: Can you find differences between the ‘shape’ of local minima that SGD
finds, depending on different step-sizes or mini-batch size, vs e.g. AdaGrad or full gradient descent?

• Same thing for GANs? Or for matrix factorizations?

• Along a training trajectory for a deep net, does the behaviour of each step resemble the convex case, is it
different early or late in training?

• How do different optimization variants affect generalization (test error)?

• Second-order methods: Do (Quasi-)Newton methods go to differently shaped local minima in neural net-
works? Or: Is the secant method a viable alternative training method?

• Quantized SGD: As quantization of gradients or iterates becomes coarser, what happens to the optimization
algorithms, and to generalization? Is it different for DL as compared to linear ML models?

• AdaGrad / Adam / signSGD: Can you suggest/try different data-dependent coordinate-wise learning rate
schemes and compare them?

• For training deep nets with very large SGD mini-batches: when does the scalability gain disappear? Is it
influenced by other properties of the optimizer? For example, what is the effect of first slowly growing the
learning rate and then later decreasing it?

• Meta-Learning: Can you learn the learning rate? The direction or curvature? See also the larger field of
AutoML.

https://github.com/epfml/OptML_course


• How well do zero-order optimization methods do for ML applications, compared to standard first-order
methods?

• Distributed or Decentralized SGD: How does the communication topology (and number of machines) influ-
ence practical convergence? (experiments can be simulated)

• Asynchronous SGD: How do different delays affect convergence? How does it interplay with momentum?
Does it act as a regularizer, like drop-out?

• Some of the theoretical behaviors we analyzed in theory: Do they actually appear in practice or not, for
convex models or deep nets?

• Frank-Wolfe or Coordinate-Descent for deep learning?

• Implicit regularization effect of SGD, as in flattening the landscape, or encouraging different trajectories or
converging to solutions with different properties

• ...

Deliverables

• Written Report. You will write a maximum 3 page PDF report on your findings, using LaTeX. You can
use unlimited addition pages for references and for an appendix. The main paper should be self-contained!

• Code. In a language of your choice. Python with PyTorch is recommended for convenient access to
gradients and optimizers. External libraries and existing implementations are allowed, if properly cited.
You submit the complete executable and documented code, as a github repository link (make sure it’s
accessible). Rules for the code part:

– Reproducibility: In your submission, provide a script like run.py or notebook that produces all results
and plots you use in the paper.

– Documentation: Your system must be clearly described in your PDF report and also well-documented
in the code itself. A useful ReadMe file must be provided.

Submission URL: https://mlcourse.epfl.ch/

Submission deadline: June 17th, 2022 (16:00)

Grading Criteria

We will grade you on the scientific contribution you made, that is on the insights gained compared to standard
baseline methods. This is only possible based on a rigorous and fair empirical comparison. The criteria are

- Solid comparison baselines supporting your claims
Quantify the benefits of your method by providing clear quality measurements of the most important
aspects and additions you chose for your model. Start with a very basic baseline, and demonstrate what
improvements your contributions yield.

- Reproducibility
Your readers should be able to reproduce your results based on your report only. Describe what what
hyper-parameters you selected and why, chose realistic and representative datasets, and clearly describe the
overall pipeline you used.

- Scientific novelty and creativity
You will likely be using more than the standard methods we saw in the course. Make sure that your report
addresses the following points.

• What is the specific aspect which you study, and why this is interesting and important.
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• Search for related work. Have similar experiments appeared in the literature? If yes, how are your
experiments adding additional insight? Discuss the pros/cons of the existing studies compared to your
approach.

• How is the algorithm variant or the aspect of your choice helping for optimization speed, accuracy or
generalization? For example, you should compare the optimization error with and without your object
of study.

- Writeup quality
Some advice when writing a scientific report:

• Try to convey a clear story giving the most relevant aspects of your findings. Learning what has not
worked can additionally help the reader (and help them better understand why you have made the
many choices you did), but focus on what is most relevant and interesting.

• Before the submission, have an external person proofread your report. Use a spell-checker.

• Plots are an excellent way to share information that might be hard to convey by writing. Your plots
should be understandable, have axis labels, appropriate axis ranges, and a self-contained caption.

As usual, we will automatically check your code and report for plagiarism.

Report Guidelines

Clearly describe your used methods, state your conclusions, and argue that the results you obtained make (or do
not make) sense and the reasons behind it. Keep the report short and to the point, with a strict limit of 3 pages.
References and an additional technical appendix are allowed. Those do not count towards this page limit, but do
not expect the reviewer to read the appendix.

Use this LATEXtemplate to get started with the report:

github.com/epfml/OptML course/tree/master/labs/mini-project/latex-example-paper

The file also contains some more helpful information on how to write a scientific report or paper. We will also
help you during the exercise session and office hours if you ask us.

For more guidelines on what makes a good report, see the grading criteria above. In particular, don’t forget to
take care about

- Reproducibility: Not only in the code, but also in the report, do include complete details about each
algorithm you tried, e.g. what lambda values you used for ridge regression?

- Baselines: Give clear experimental evidence: It is crucial to report relative differences in the evaluation
metrics, that is, with and without the element you study. Compare your approach to several properly
implemented baseline algorithms.

Some additional resources on LaTeX:

• https://github.com/VoLuong/Begin-Latex-in-minutes - getting started with LaTeX

• http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/ - tutorial on LaTeX

• http://www.stdout.org/~winston/latex/latexsheet-a4.pdf - cheat sheet collecting most of all use-
ful commands in LaTeX

• http://en.wikibooks.org/wiki/LaTeX - detailed tutorial on LaTeX

Producing figures for LaTeX in Python

There are some good visualization tools in Python. “matplotlib” is probably the single most used Python package
for 2D-graphics. The relevant tutorials are as follow:

• Matplotlib tutorial: https://github.com/rougier/matplotlib-tutorial/
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• Matplotlib tutorial: https://sites.google.com/site/scigraphs/tutorial

• Matplotlib Tutorial: http://jakevdp.github.io/mpl_tutorial/

Regarding other useful Python data visualization libraries, please refer to this blog for more information.

4

https://sites.google.com/site/scigraphs/tutorial
http://jakevdp.github.io/mpl_tutorial/
http://jakevdp.github.io/mpl_tutorial/

	Introduction
	Topic Examples
	Deliverables
	Grading Criteria
	Report Guidelines
	Producing figures for LaTeX in Python


