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This chapter develops the basic theory of convex functions that we will
need later. Much of the material is also covered in other courses, so we will
refer to the literature for standard material and focus more on material that
we feel is less standard (but important in our context).

1.1 Mathematical Background

1.1.1 Notation

For vectors in Rd, we use bold font, and for their coordinates normal font,
e.g. x = (x1, . . . , xd) ∈ Rd. x1,x2, . . . denotes a sequence of vectors. Vectors
are considered as column vectors, unless they are explicitly transposed.
So x is a column vector, and x⊤, its transpose, is a row vector. x⊤y is the
scalar product

∑d
i=1 xiyi of two vectors x,y ∈ Rd.

∥x∥ denotes the Euclidean norm (ℓ2-norm or 2-norm) of vector x,

∥x∥2 = x⊤x =
d∑

i=1

x2
i .

We also use
N = {1, 2, . . .} and R+ := {x ∈ R : x ≥ 0}

to denote the natural and non-negative real numbers, respectively. We are
freely using basic notions and material from linear algebra and analysis,
such as open and closed sets, vector spaces, matrices, continuity, conver-
gence, limits, triangle inequality, among others.

1.1.2 The Cauchy-Schwarz inequality

Lemma 1.1 (Cauchy-Schwarz inequality). Let u,v ∈ Rd. Then

|u⊤v| ≤ ∥u∥ ∥v∥ .
The inequality holds beyond the Euclidean norm; all we need is an

inner product, and a norm induced by it. But here, we only discuss the
Euclidean case.

For nonzero vectors, the Cauchy-Schwarz inequality is equivalent to

−1 ≤ u⊤v

∥u∥ ∥v∥ ≤ 1,
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and this fraction can be used to define the angle α between u and v:

cos(α) =
u⊤v

∥u∥ ∥v∥ ,

where α ∈ [0, π]. The following shows the situation for two unit vectors
(∥u∥ = ∥v∥ = 1): The scalar product u⊤v is the length of the projection of
v onto u (which is considered to be negative when α > π/2). This is just
the highschool definition of the cosine.

v

u
α

u>v < 0

1v

uα
u>v > 0

1

Hence, equality in Cauchy-Schwarz is obtained if α = 0 (u and v point
into the same direction), or if α = π (u and v point into opposite direc-
tions):

v = u
u>v = 1

v = −u α = π
u>v = −1

Fix u ̸= 0. We see that the vector v maximizing the scalar product u⊤v
among all vectors v of some fixed length is a positive multiple of u, while
the scalar product is minimized by a negative multiple of u.

Proof of the Cauchy-Schwarz inequality. There are many proof, but the
authors particularly like this one: define the quadratic function

f(x) =
d∑

i=1

(uix+vi)
2 =

(
d∑

i=1

u2
i

)
x2+

(
2

d∑
i=1

uivi

)
x+

(
d∑

i=1

v2i

)
=: ax2+bx+c.
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We know that f(x) = ax2 + bx+ c = 0 has the two solutions

x1,2 =
−b±

√
b2 − 4ac

2a
.

This is known as the Mitternachtsformel in German-speaking countries, as
you are supposed to know it even when you are asleep at midnight.

As by definition, f(x) ≥ 0 for all x, f(x) = 0 has at most one real solu-
tion, and this is equivalent to having discriminant b2 − 4ac ≤ 0. Plugging
in the definitions of a, b, c, we get

b2−4ac =

(
2

d∑
i=1

uivi

)2

−4

(
d∑

i=1

u2
i

)(
d∑

i=1

v2i

)
= 4(u⊤v)2−4 ∥u∥2 ∥v∥2 ≤ 0.

Dividing by 4 and taking square roots yields the Cauchy-Schwarz inequal-
ity.

1.1.3 The spectral norm

Definition 1.2 (Spectral norm). Let A be an (m× d)-matrix. Then

∥A∥ := max
v∈Rd,v ̸=0

∥Av∥
∥v∥ = max

∥v∥=1
∥Av∥

is the 2-norm (or spectral norm) of A.

In words, the spectral norm is the largest factor by which a vector can
be stretched in length under the mapping v → Av. Note that as a simple
consequence,

∥Av∥ ≤ ∥A∥∥v∥
for all v.

It is good to remind ourselves what a norm is, and why the spectral
norm is actually a norm. We need that it is absolutely homegeneous:
∥λA∥ = |λ|∥A∥ which follows from the fact that the Euclidean norm is ab-
solutely homegeneous. Then we need the triangle inequality: ∥A + B∥ ≤
∥A∥ + ∥B∥ for two matrices of the same dimensions. Again, this follows
from the triangle inequality for the Euclidean norm. Finally, we need that
∥A∥ = 0 implies A = 0. Which is true, since for any nonzero matrix A,
there is a vector v such that Av and hence the Euclidean norm of Av is
nonzero.
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1.1.4 The mean value theorem

We also recall the mean value theorem that we will frequently need:

Theorem 1.3 (Mean value theorem). Let a < b be real numbers, and let h :
[a, b] → R be a continuous function that is differentiable on (a, b); we denote the
derivative by h′. Then there exists c ∈ (a, b) such that

h′(c) =
h(b)− h(a)

b− a
.

Geometrically, this means the following: We can interpret the value
(h(b)−h(a))/(b−a) as the slope of the line through the two points (a, h(a))
and (b, h(b)). Then the mean value theorem says that between a and b, we
find a tangent to the graph of h that has the same slope:

a b

h(a)

h(b)

c

1.1.5 The fundamental theorem of calculus

If a function h is continuously differentiable in an interval [a, b], we have
another way of expressing h(b)− h(b) in terms of the derivative.

Theorem 1.4 (Fundamental theorem of calculus). Let a < b be real num-
bers, and let h : dom(h) → R be a differentiable function on an open domain
dom(h) ⊃ [a, b], and such that h′ is continuous on [a, b]. Then

h(b)− h(a) =

∫ b

a

h′(t)dt.

This theorem is the theoretical underpinning of typical definite inte-
gral computations in high school. For example, to evaluate

∫ 4

2
x2dx, we

integrate x2 (giving us x3/3), and then compute∫ 4

2

x2dx =
43

3
− 23

3
=

56

3
.
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1.1.6 Differentiability

For univariate functions f : dom(f) → R with dom(f) ⊆ R, differentia-
bility is covered in high school. We will need the concept for multivari-
ate and vector-valued functions f : dom(f) → Rm with dom(f) ⊆ Rd.
Mostly, we deal with the case m = 1: real-valued functions in d variables.
As we frequently need this material, we include a refresher here.

Definition 1.5. Let f : dom(f) → Rm where dom(f) ⊆ Rd. Function f is
called differentiable at x in the interior of dom(f) if there exists an (m × d)-
matrix A and an error function r : Rd → Rm defined in some neighborhood of
0 ∈ Rd such that for all y in some neighborhood of x,

f(y) = f(x) + A(y − x) + r(y − x),

where
lim
v→0

∥r(v)∥
∥v∥ = 0.

It then also follows that the matrix A is unique, and it is called the differential
or Jacobian of f at x. We will denote it by Df(x). More precisely, Df(x) is the
matrix of partial derivatives at the point x,

Df(x)ij =
∂fi
∂xj

(x).

f is called differentiable if f is differentiable at all x ∈ dom(f) (which implies
that dom(f) is open).

Differentiability at x means that in some neighborhood of x, f is ap-
proximated by a (unique) affine function f(x) + Df(x)(y − x), up to a
sublinear error term. If m = 1, Df(x) is a row vector typically denoted
by ∇f(x)⊤, where the (column) vector ∇f(x) is called the gradient of f at
x. Geometrically, this means that the graph of the affine function f(x) +
∇f(x)⊤(y − x) is a tangent hyperplane to the graph of f at (x, f(x)); see
Figure 1.1.

It also follows easily that a differentiable function is continuous, see
Exercise 1.

Let us do a simple example to illustrate the concept of differentiability.
Consider the function f(x) = x2. We know that its derivative is f ′(x) = 2x.
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x

f(y)

f(x) +∇f(x)>(y − x)

y

Figure 1.1: If f is differentiable at x, the graph of f is locally (around x)
approximated by a tangent hyperplane

But why? For fixed x and y = x+ v, we compute

f(y) = (x+ v)2 = x2 + 2vx+ v2

= f(x) + 2x · v + v2

= f(x) + A(y − x) + r(y − x),

where A := 2x, r(y−x) = r(v) := v2. We have limv→0
|r(v)|
|v| = limv→0 |v| = 0.

Hence, A = 2x is indeed the differential (a.k.a. derivative) of f at x.

In computing differentials, the chain rule is particularly useful.

Lemma 1.6 (Chain rule). Let f : dom(f) → Rm,dom(f) ⊆ Rd and g :
dom(g) → Rd. Suppose that g is differentiable at x ∈ dom(g) and that f is
differentiable at g(x) ∈ dom(f). Then f ◦ g (the composition of f and g) is
differentiable at x, with the differential given by the matrix equation

D(f ◦ g)(x) = Df(g(x))Dg(x).

Here is an application of the chain rule that we will use frequently. Let
f : dom(f) → Rm be a differentiable function with (open) convex domain,
and fix x,y ∈ dom(f). There is an open interval I containing [0, 1] such
that x + t(y − x) ∈ dom(f) for all t ∈ I . Define g : I → Rd by g(t) =
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x+ t(y−x) and set h = f ◦g. Thus, h : I → Rm with h(t) = f(x+ t(y−x)),
and for all t ∈ I , we have

h′(t) = Dh(t) = Df(g(t))Dg(t) = Df(x+ t(y − x))(y − x). (1.1)

Since we mostly consider real-valued functions, we will encounter dif-
ferentials in the form of gradients. For example, if f(x) = c⊤x =

∑d
j=1 cjxj ,

then ∇f(x) = c; and if f(x) = ∥x∥2 =∑d
j=1 x

2
j , then ∇f(x) = 2x.

1.2 Convex sets

Definition 1.7. A set C ⊆ Rd is convex if for any two points x,y ∈ C, the
connecting line segment is contained in C. In formulas, if for all λ ∈ [0, 1],
λx+ (1− λ)y ∈ C; see Figure 1.2.

x

y x

y

Figure 1.2: A convex set (left) and a non-convex set (right)

Observation 1.8. Let Ci, i ∈ I be convex sets, where I is a (possibly infinite)
index set. Then C =

⋂
i∈I Ci is a convex set.

For d = 1, convex sets are intervals.

1.2.1 The mean value inequality

The mean value inequality can be considered as as generalization of the
mean value theorem to multivariate and vector-valued functions over con-
vex sets (a “mean value equality” does not exist in this full generality).

To motivate it, let us consider the univariate and real-valued case first.
Let f : dom(f) → R be differentiable and suppose that f has bounded
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derivatives over an interval X ⊆ dom(f), meaning that for some real
number B, we have |f ′(x)| ≤ B for all x ∈ X . The mean value theorem
then gives the mean value inequality

|f(y)− f(x)| = |f ′(c)(y − x)| ≤ B|y − x|

for all x, y ∈ X and some in-between c. In other words, f is not only
continuous but actually B-Lipschitz over X .

Vice versa, suppose that f is B-Lipschitz over a nonempty open interval
X , then for all c ∈ X ,

|f ′(c)| = | lim
δ→0

f(c+ δ)− f(c)

δ
| ≤ B,

so f has bounded derivatives over X . Hence, over an open interval, Lip-
schitz functions are exactly the ones with bounded derivative. Even if the
interval is not open, bounded derivatives still yield the Lipschitz property,
but the other direction may fail. As a trivial example, the Lipschitz con-
dition is always satisfied over a singleton interval X = {x}, but that does
not say anything about the derivative at x. In any case, we need X to be
an interval; if X has “holes”, the previous arguments break down.

These considerations extend to multivariate and vector-valued func-
tions over convex subsets of the domain.

Theorem 1.9. Let f : dom(f) → Rm be differentiable, X ⊆ dom(f) a con-
vex set, B ∈ R+. If X ⊆ dom(f) is nonemepty and open, the following two
statements are equivalent.

(i) f is B-Lipschitz, meaning that

∥f(x)− f(y)∥ ≤ B ∥x− y∥ , ∀x,y ∈ X

(ii) f has differentials bounded by B (in spectral norm), meaning that

∥Df(x)∥ ≤ B, ∀x ∈ X.

Moreover, for every (not necessarily open) convex X ⊆ dom(f), (ii) implies (i),
and this is the mean value inequality.
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Proof. Suppose that f is B-Lipschitz over an open set X . For v ∈ Rd,
v → 0, differentiability at x ∈ X yields for small v ∈ Rd that x + v ∈ X
and therefore

B ∥v∥ ≥ ∥f(x+ v)− f(x)∥ = ∥Df(x)v + r(v)∥ ≥ ∥Df(x)v∥ − ∥r(v)∥ ,

where ∥r(v)∥ / ∥v∥ → 0, the first inequality uses (i), and the last is the
reverse triangle inequality. Rearranging and dividing by ∥v∥, we get

∥Df(x)v∥
∥v∥ ≤ B +

∥r(v)∥
∥v∥ .

Let v⋆ be a unit vector such that ∥Df(x)∥ = ∥Df(x)v⋆∥ / ∥v⋆∥ and let v =
tv⋆ for t → 0. Then we further get

∥Df(x)∥ ≤ B +
∥r(v)∥
∥v∥ → B,

and ∥Df(x)∥ ≤ B follows, so differentials are bounded by B.
For the other direction, suppose that differentials are bounded by B

over X (not necessarily open); we proceed as in [FM91].
For fixed x,y ∈ X ⊆ dom(f),x ̸= y, and z ∈ Rm (to be determined

later), we define
h(t) = z⊤f(x+ t(y − x))

over dom(h) = [0, 1], in which case the chain rule yields

h′(t) = z⊤Df(x+ t(y − x))(y − x), t ∈ (0, 1),

see also (1.1). Note that x + t(y − x) ∈ X for t ∈ [0, 1] by convexity of X .
The mean value theorem guarantees c ∈ (0, 1) such that h′(c) = h(1)−h(0).
Now we compute∥∥z⊤(f(y)− f(x))

∥∥ = |h(1)− h(0)| = |h′(c)|
= z⊤Df(x+ c(y − x))(y − x)

≤ ∥z∥∥Df(x+ c(y − x))(y − x)∥ (Cauchy-Schwarz)
≤ ∥z∥∥Df(x+ c(y − x))∥∥(y − x)∥ (spectral norm)
≤ B∥z∥∥(y − x)∥ (bounded differentials).
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We assume w.l.o.g. that f(x) ̸= f(y), as otherwise, (i) trivially holds;
now we set

z =
f(y)− f(x)

∥f(y)− f(x)∥.
With this, the previous inequality reduces to (i), so f is indeed B-Lipschitz
over X .

1.3 Convex functions

We are considering real-valued functions f : dom(f) → R, dom(f) ⊆ Rd.

Definition 1.10 ([BV04, 3.1.1]). A function f : dom(f) → R is convex if (i)
dom(f) is convex and (ii) for all x,y ∈ dom(f) and all λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (1.2)

Geometrically, the condition means that the line segment connecting
the two points (x, f(x)), (y, f(y)) ∈ Rd+1 lies pointwise above the graph
of f ; see Figure 1.3. (Whenever we say “above”, we mean “above or on”.)
An important special case arises when f : Rd → R is an affine function,
i.e. f(x) = c⊤x+ c0 for some vector c ∈ Rd and scalar c0 ∈ R. In this case,
(1.2) is always satisfied with equality, and line segments connecting points
on the graph lie pointwise on the graph.

While the graph of f is the set {(x, f(x)) ∈ Rd+1 : x ∈ dom(f)}, the
epigraph (Figure 1.4) is the set of points above the graph,

epi(f) := {(x, α) ∈ Rd+1 : x ∈ dom(f), α ≥ f(x)}.

Observation 1.11. f is a convex function if and only if epi(f) is a convex set.

Proof. This is easy but let us still do it to illustrate the concepts. Let f be a
convex function and consider two points (x, α), (y, β) ∈ epi(f), λ ∈ [0, 1].
This means, f(x) ≤ α, f(y) ≤ β, hence by convexity of f ,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λα + (1− λ)β.

Therefore, by definition of the epigraph,

λ(x, α) + (1− λ)(y, β) = (λx+ (1− λ)y, λα+ (1− λ)β) ∈ epi(f),
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x y

f(x)

f(y)

λx+ (1− λ)y

f(λx+ (1− λ)y)

λf(x) + (1− λ)f(y)

Figure 1.3: A convex function

so epi(f) is a convex set. In the other direction, let epi(f) be a convex set
and consider two points x,y ∈ dom(f), λ ∈ [0, 1]. By convexity of epi(f),
we have

epi(f) ∋ λ(x, f(x))+(1−λ)(y, f(y)) = (λx+(1−λ)y, λf(x)+(1−λ)f(y)),

and this is just a different way of writing (1.2).

Lemma 1.12 (Jensen’s inequality). Let f : Rd → R be a convex function,
x1, . . . ,xm ∈ dom(f), and λ1, . . . , λm ∈ R+ such that

∑m
i=1 λi = 1. Then

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi).

For m = 2, this is (1.2). The proof of the general case is Exercise 2.

Lemma 1.13. Let f be convex and suppose that dom(f) is open. Then f is
continuous.

This is not entirely obvious (see Exercise 3) and really needs dom(f) ⊆
Rd. It becomes false if we consider convex functions over vector spaces of
infinite dimension. In fact, in this case, even linear functions (which are in
particular convex) may fail to be continuous.
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epi(f)

x

f(x)

graph of f
epi(f)

f(x)

x

Figure 1.4: Graph and epigraph of a non-convex function (left) and a con-
vex function (right)

Lemma 1.14. There exists an (infinite dimensional) vector space V and a linear
function f : V → R such that f is discontinuous at all v ∈ V .

Proof. This is a classical example. Let us consider the vector space V of all
univariate polynomials; the vector space operations are addition of two
polynomials, and multiplication of a polynomial with a scalar. We con-
sider a polynomial such as 3x5 + 2x2 + 1 as a function x 7→ 3x5 + 2x2 + 1
over the domain [−1, 1].

The standard norm in a function space such as V is the supremum norm
∥ · ∥∞, defined for any bounded function h : [−1, 1] → R via ∥h∥∞ :=
supx∈[−1,1] |h(x)|. Polynomials are continuous and as such bounded over
[−1, 1].

We now consider the linear function f : V → R defined by f(p) = p′(0),
the derivative of p at 0. The function f is linear, simply because the deriva-
tive is a linear operator. As dom(f) is the whole space V , dom(f) is open.
We claim that f is discontinuous at 0 (the zero polynomial). Since f is
linear, this implies discontinuity at every polynomial p ∈ V . To prove dis-
continuity at 0, we first observe that f(0) = 0 and then show that there are
polynomials p of arbitrarily small supremum norm with f(p) = 1. Indeed,
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for n, k ∈ N, n > 0, consider the polynomial

pn,k(x) =
1

n

k∑
i=0

(−1)i
(nx)2i+1

(2i+ 1)!
=

1

n

(
nx− (nx)3

3!
+

(nx)5

5!
− · · · ± (nx)2k+1

(2k + 1)!

)
which—for any fixed n and sufficiently large k—approximates the func-
tion

sn(x) =
1

n
sin(nx) =

1

n

∞∑
i=0

(−1)i
(nx)2i+1

(2i+ 1)!

up to any desired precision over the whole interval [−1, 1] (Taylor’s theo-
rem with remainder). In formulas, ∥pn,k − sn∥∞ → 0 as k → ∞. Moreover,
∥sn∥∞ → 0 as n → ∞. Using the triangle inequality, this implies that
∥pn,k∥ → 0 as n, k → ∞. On the other hand, f(pn,k) = p′n,k(0) = 1 for all
n, k.

1.3.1 First-order characterization of convexity

As an example of a convex function, let us consider f(x1, x2) = x2
1 + x2

2.
The graph of f is the unit paraboloid in R3 which looks convex. However,
to verify (1.2) directly is somewhat cumbersome. Next, we develop better
ways to do this if the function under consideration is differentiable.

Lemma 1.15 ([BV04, 3.1.3]). Suppose that dom(f) is open and that f is differ-
entiable; in particular, the gradient (vector of partial derivatives)

∇f(x) :=

(
∂f

∂x1

(x), . . . ,
∂f

∂xd

(x)

)
exists at every point x ∈ dom(f). Then f is convex if and only if dom(f) is
convex and

f(y) ≥ f(x) +∇f(x)⊤(y − x) (1.3)

holds for all x,y ∈ dom(f).

Geometrically, this means that for all x ∈ dom(f), the graph of f lies
above its tangent hyperplane at the point (x, f(x)); see Figure 1.5.

Proof. Suppose that f is convex, meaning that for t ∈ (0, 1),

f(x+t(y−x)) = f((1−t)x+ty) ≤ (1−t)f(x)+tf(y) = f(x)+t(f(y)−f(x)).
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x y

f(y)

f(x) +∇f(x)>(y − x)

Figure 1.5: First-order characterization of convexity

Dividing by t and using differentiability at x, we get

f(y) ≥ f(x) +
f(x+ t(y − x))− f(x)

t

= f(x) +
∇f(x)⊤t(y − x) + r(t(y − x))

t

= f(x) +∇f(x)⊤(y − x) +
r(t(y − x))

t
,

where the error term r(t(y − x))/t goes to 0 as t → 0. The inequality
f(y) ≥ f(x) +∇f(x)⊤(y − x) follows.

Now suppose this inequality holds for all x,y ∈ dom(f), let λ ∈ [0, 1],
and define z := λx + (1 − λ)y ∈ dom(f) (by convexity of dom(f)). Then
we have

f(x) ≥ f(z) +∇f(z)⊤(x− z),

f(y) ≥ f(z) +∇f(z)⊤(y − z).

After multiplying the first inequality by λ and the second one by (1 − λ),
the gradient terms cancel in the sum of the two inequalities, and we get

λf(x) + (1− λ)f(y) ≥ f(z) = f(λx+ (1− λ)y).

This is convexity.
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For f(x1, x2) = x2
1 + x2

2, we have ∇f(x) = (2x1, 2x2), hence (1.3) boils
down to

y21 + y22 ≥ x2
1 + x2

2 + 2x1(y1 − x1) + 2x2(y2 − x2),

which after some rearranging of terms is equivalent to

(y1 − x1)
2 + (y2 − x2)

2 ≥ 0,

hence true. There are relevant convex functions that are not differentiable,
see Figure 1.6 for an example. More generally, Exercise 8 asks you to prove
that the ℓ1-norm (or 1-norm) f(x) = ∥x∥1 is convex.

x

f(x) = |x|

0

Figure 1.6: A non-differentiable convex function

There is another useful and less standard first-order characterization of
convexity that we can easily derive from the standard one above.

Lemma 1.16. Suppose that dom(f) is open and that f is differentiable. Then f
is convex if and only if dom(f) is convex and

(∇f(y)−∇f(x))⊤(y − x) ≥ 0 (1.4)

holds for all x,y ∈ dom(f).

The inequality (1.4) is known as monotonicity of the gradient.

Proof. If f is convex, the first-order characterization in Lemma 1.15 yields

f(y) ≥ f(x) +∇f(x)⊤(y − x),

f(x) ≥ f(y) +∇f(y)⊤(x− y),

for all x,y ∈ dom(f). After adding up these two inequalities, f(x) + f(y)
appears on both sides and hence cancels, so that we get

0 ≥ ∇f(x)⊤(y − x) +∇f(y)⊤(x− y) = (∇f(y)−∇f(x))⊤(x− y).
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Multiplying this by −1 yields (1.4).
For the other direction, suppose that monotonicty of the gradient (1.4)

holds. Then we in particular have

(∇f(x+ t(y − x))−∇f(x))⊤(t(y − x)) ≥ 0

for all x,y ∈ dom(f) and t ∈ (0, 1). Dividing by t, this yields

(∇f(x+ t(y − x))−∇f(x))⊤(y − x)) ≥ 0. (1.5)

Fix x,y ∈ dom(f). For t ∈ [0, 1], let h(t) := f(x+ t(y − x)). In our case
where f is real-valued, (1.1) yields h′(t) = ∇f(x + t(y − x))⊤(y − x), t ∈
(0, 1). Hence, (1.5) can be rewritten as

h′(t) ≥ ∇f(x)⊤(y − x), t ∈ (0, 1).

By the mean value theorem, there is c ∈ (0, 1) such that h′(c) = h(1)−h(0).
Then

f(y) = h(1) = h(0) + h′(c) = f(x) + h′(c)

≥ f(x) +∇f(x)⊤(y − x).

This is the first-order characterization of convexity (Lemma 1.15).

1.3.2 Second-order characterization of convexity

If f : dom(f) → R is twice differentiable (meaning that f is differentiable
and the gradient function ∇f is also differentiable), convexity can be char-
acterized as follows.

Lemma 1.17. Suppose that dom(f) is open and that f is twice differentiable; in
particular, the Hessian (matrix of second partial derivatives)

∇2f(x) =


∂2f

∂x1∂x1
(x) ∂2f

∂x1∂x2
(x) · · · ∂2f

∂x1∂xd
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2∂x2

(x) · · · ∂2f
∂x2∂xd

(x)
...

... · · · ...
∂2f

∂xd∂x1
(x) ∂2f

∂xd∂x2
(x) · · · ∂2f

∂xd∂xd
(x)


exists at every point x ∈ dom(f) and is symmetric. Then f is convex if and only
if dom(f) is convex, and for all x ∈ dom(f), we have

∇2f(x) ⪰ 0 (i.e. ∇2f(x) is positive semidefinite). (1.6)
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(A symmetric matrix M is positive semidefinite, denoted by M ⪰ 0, if x⊤Mx ≥
0 for all x, and positive definite, denoted by M ≻ 0, if x⊤Mx > 0 for all x ̸= 0.)

The fact that the Hessians of a twice continuously differentiable function
are symmetric is a classical result known as the Schwarz theorem [AE08,
Corollary 5.5]. But symmetry in fact already holds if f is twice differen-
tiable [Die69, (8.12.3)]. However, if f is only twice partially differentiable,
we may get non-symmetric Hessians [AE08, Remark 5.6].

Proof. Once again, we employ our favorite univariate function h(t) :=
f(x + t(y − x)), for fixed x,y ∈ dom(f) and t ∈ I where I ⊃ [0, 1] is a
suitable open interval. But this time, we also need h’s second derivative.
For t ∈ I,v := y − x, we have

h′(t) = ∇f(x+ tv)⊤v,

h′′(t) = v⊤∇2f(x+ tv)v.

The formula for h′(t) has already been derived in the proof of Lemma 1.16,
and the formula for h′′(t) is Exercise 9.

If f is convex, we always have h′′(0) ≥ 0, as we will show next. Given
this, ∇2f(x) ⪰ 0 follows for every x ∈ dom(f): by openness of dom(f),
for every v ∈ Rd of sufficiently small norm, there is y ∈ dom(f) such that
v = y − x, and then v⊤∇2f(x)v = h′′(0) ≥ 0. By scaling, this inequality
extends to all v ∈ Rd.

To show h′′(0) ≥ 0, we observe that for all sufficiently small δ, x+ δv ∈
dom(f) and hence

h′(δ)− h′(0)

δ
=

(∇f(x+ δv)−∇f(x))⊤v

δ
=

(∇f(x+ δv)−∇f(x))⊤δv

δ2
≥ 0,

by monotonicity of the gradient for convex f (Lemma 1.16). It follows that
h′′(0) = limδ→0(h

′(δ)− h′(0))/δ ≥ 0.
For the other direction, the mean value theorem applied to h′ yields

c ∈ (0, 1) such that h′(1)− h′(0) = h′′(c), and spelled out, this is

∇f(y)⊤v −∇f(x)⊤v = v⊤∇2f(x+ cv)v ≥ 0, (1.7)

since ∇2f(z) ⪰ 0 for all z ∈ dom(f). Hence, we have proved monotonicity
of the gradient which by Lemma 1.16 implies convexity of f .
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Geometrically, Lemma 1.17 means that the graph of f has non-negative
curvature everywhere and hence “looks like a bowl”. For f(x1, x2) = x2

1 +
x2
2, we have

∇2f(x) =

(
2 0
0 2

)
,

which is a positive definite matrix. In higher dimensions, the same ar-
gument can be used to show that the squared distance dy(x) = ∥x −
y∥2 to a fixed point y is a convex function; see Exercise 4. The non-
squared Euclidean distance ∥x − y∥ is also convex in x, as a consequence
of Lemma 1.18(ii) below and the fact that every seminorm (in particular
the Euclidean norm ∥x∥) is convex (Exercise 10). The squared Euclidean
distance has the advantage that it is differentiable, while the Euclidean
distance itself (whose graph is an “ice cream cone” for d = 2) is not.

1.3.3 Operations that preserve convexity

There are three important operations that preserve convexity.

Lemma 1.18 (Exercise 5).

(i) Let f1, f2, . . . , fm be convex functions, λ1, λ2, . . . , λm ∈ R+. Then f :=
maxmi=1 fi as well as f :=

∑m
i=1 λifi are convex on dom(f) :=

⋂m
i=1 dom(fi).

(ii) Let f be a convex function with dom(f) ⊆ Rd, g : Rm → Rd an affine
function, meaning that g(x) = Ax + b, for some matrix A ∈ Rd×m and
some vector b ∈ Rd. Then the function f ◦ g (that maps x to f(Ax + b))
is convex on dom(f ◦ g) := {x ∈ Rm : g(x) ∈ dom(f)}.

1.4 Minimizing convex functions

The main feature that makes convex functions attractive in optimization
is that every local minimum is a global one, so we cannot “get stuck” in
local optima. This is quite intuitive if we think of the graph of a convex
function as being bowl-shaped.

Definition 1.19. A local minimum of f : dom(f) → R is a point x such that
there exists ε > 0 with

f(x) ≤ f(y) ∀y ∈ dom(f) satisfying ∥y − x∥ < ε.
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Lemma 1.20. Let x⋆ be a local minimum of a convex function f : dom(f) → R.
Then x⋆ is a global minimum, meaning that

f(x⋆) ≤ f(y) ∀y ∈ dom(f).

Proof. Suppose there exists y ∈ dom(f) such that f(y) < f(x⋆) and define
y′ := λx⋆ + (1 − λ)y for λ ∈ (0, 1). From convexity (1.2), we get that
that f(y′) < f(x⋆). Choosing λ so close to 1 that ∥y′ − x⋆∥ < ε yields a
contradiction to x⋆ being a local minimum.

This does not mean that a convex function always has a global mini-
mum. Think of f(x) = x as a trivial example. But also if f is bounded from
below over dom(f), it may fail to have a global minimum (f(x) = ex).
To ensure the existence of a global minimum, we need additional condi-
tions. For example, it suffices if outside some ball B, all function values
are larger than some value f(x),x ∈ B. In this case, we can restrict f
to B, without changing the smallest attainable value. And on B (which is
compact), f attains a minimum by continuity (Lemma 1.13). An easy ex-
ample: for f(x1, x2) = x2

1+x2
2, we know that outside any ball containing 0,

f(x) > f(0) = 0.
Another easy condition in the differentiable case is given by the follow-

ing result.

Lemma 1.21. Suppose that f : dom(f) → R is convex and differentiable over
an open domain dom(f) ⊆ Rd. Let x ∈ dom(f). If ∇f(x) = 0, then x is a
global minimum.

Proof. Suppose that ∇f(x) = 0. According to Lemma 1.15, we have

f(y) ≥ f(x) +∇f(x)⊤(y − x) = f(x)

for all y ∈ dom(f), so x is a global minimum.

The converse is also true and does not even require convexity.

Lemma 1.22. Suppose that f : dom(f) → R is differentiable over an open
domain dom(f) ⊆ Rd. Let x ∈ dom(f). If x is a global minimum then
∇f(x) = 0.
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Proof. Suppose that ∇f(x)i ̸= 0 for some i. For t ∈ R, we define x(t) =
x + tei, where ei is the i-th unit vector. For |t| sufficiently small, we have
x(t) ∈ dom(f) since dom(f) is open. Let z(t) = f(x(t)). By the chain rule,
z′(0) = ∇f(x)⊤ei = ∇f(x)i ̸= 0. Hence, z decreases in one direction as we
move away from 0, and this yields f(x(t)) < f(x) for some t, so x is not a
global minimum.

1.4.1 Strictly convex functions

In general, a global minimum of a convex function is not unique (think of
f(x) = 0 as a trivial example). However, if we forbid “flat” parts of the
graph of f , a global minimum becomes unique (if it exists at all).

Definition 1.23 ([BV04, 3.1.1]). A function f : dom(f) → R is strictly con-
vex if (i) dom(f) is convex and (ii) for all x ̸= y ∈ dom(f) and all λ ∈ (0, 1),
we have

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y). (1.8)

This means that the open line segment connecting (x, f(x)) and (y, f(y))
is pointwise strictly above the graph of f . For example, f(x) = x2 is strictly
convex.

Lemma 1.24 ([BV04, 3.1.4]). Suppose that dom(f) is open and that f is twice
continuously differentiable. If the Hessian ∇2f(x) ≻ 0 for every x ∈ dom(f)
(i.e., z⊤∇2f(x)z > 0 for any z ̸= 0), then f is strictly convex.

The converse is false, though: f(x) = x4 is strictly convex but has van-
ishing second derivative at x = 0.

Lemma 1.25. Let f : dom(f) → R be strictly convex. Then f has at most one
global minimum.

Proof. Suppose x⋆ ̸= y⋆ are two global minima with fmin = f(x⋆) = f(y⋆),
and let z = 1

2
x⋆ + 1

2
y⋆. By (1.8),

f(z) <
1

2
fmin +

1

2
fmin = fmin,

a contradiction to x⋆ and y⋆ being global minima.
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1.4.2 Example: Least squares

Suppose we want to fit a hyperplane to a set of data points x1, . . . ,xm in
Rd, based on the hypothesis that the points actually come (approximately)
from a hyperplane. A classical method for this is least squares. For con-
creteness, let us do this in R2. Suppose that the data points are

(1, 10), (2, 11), (3, 11), (4, 10), (5, 9), (6, 10), (7, 9), (8, 10),

Figure 1.7 (left).

x

y

x

y

Figure 1.7: Data points in R2 (left) and least-squares fit (right)

Also, for simplicity (and quite appropriately in this case), let us restrict
to fitting a linear model, of more formally to fit non-vertical lines of the
form y = w0 + w1x. If (xi, yi) is the i-th data point, the least squares fit
chooses w0, w1 such that the least squares objective

f(w0, w1) =
8∑

i=1

(w1xi + w0 − yi)
2

is minimized. It easily follows from Lemma 1.18 that f is convex. In fact,

f(w0, w1) = 204w2
1 + 72w1w0 − 706w1 + 8w2

0 − 160w0 + 804, (1.9)

24



so we can check convexity directly using the second order condition. We
have gradient

∇f(w0, w1) = (72w1 + 16w0 − 160, 408w1 + 72w0 − 706)

and Hessian

∇2(w0, w1) =

(
16 72
72 408

)
.

A 2 × 2 matrix is positive semidefinite if the diagonal elements and the
determinant are positive, which is the case here, so f is actually strictly
convex and has a unique global minimum. To find it, we solve the linear
system ∇f(w0, w1) = (0, 0) of two equations in two unknowns and obtain
the global minimum

(w⋆
0, w

⋆
1) =

(43
4
,−1

6

)
.

Hence, the “optimal” line is

y = −1

6
x+

43

4
,

see Figure 1.7 (right).

1.4.3 Constrained Minimization

Frequently, we are interested in minimizing a convex function only over a
subset X of its domain.

Definition 1.26. Let f : dom(f) → R be convex and let X ⊆ dom(f) be a
convex set. A point x ∈ X is a minimizer of f over X if

f(x) ≤ f(y) ∀y ∈ X.

If f is differentiable, minimizers of f over X have a very useful charac-
terization.

Lemma 1.27 ([BV04, 4.2.3]). Suppose that f : dom(f) → R is convex and
differentiable over an open domain dom(f) ⊆ Rd, and let X ⊆ dom(f) be a
convex set. Point x⋆ ∈ X is a minimizer of f over X if and only if

∇f(x⋆)⊤(x− x⋆) ≥ 0 ∀x ∈ X.
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If X does not contain the global minimum, then Lemma 1.27 has a
nice geometric interpretation. Namely, it means that X is contained in the
halfspace {x ∈ Rd : ∇f(x⋆)⊤(x − x⋆) ≥ 0} (normal vector ∇f(x⋆) at x⋆

pointing into the halfspace); see Figure 1.8. In still other words, x − x⋆

forms a non-obtuse angle with ∇f(x⋆) for all x ∈ X .

x?

∇f(x?)

x

X

∇f(x?)>(x− x?) ≥ 0

Figure 1.8: Optimality condition for constrained optimization

We typically write constrained minimization problems in the form

argmin{f(x) : x ∈ X} (1.10)

or
minimize f(x)
subject to x ∈ X . (1.11)

1.5 Existence of a minimizer

The existence of a minimizer (or a global minimum if X = dom(f)) will
be an assumption made by most minimization algorithms that we discuss
later. In practice, such algorithms are being used (and often also work)
if there is no minimizer. By “work”, we mean in this case that they com-
pute a point x such that f(x) is close to infy∈X f(y), assuming that the
infimum is finite (as in f(x) = ex). But a sound theoretical analysis usu-
ally requires the existence of a minimizer. Therefore, this section develops
tools that may helps us in analyzing whether this is the case for a given
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convex function. To avoid technicalities, we restrict ourselves to the case
dom(f) = Rd.

1.5.1 Sublevel sets and the Weierstrass Theorem

Definition 1.28. Let f : Rd → R, α ∈ R. The set

f≤α := {x ∈ Rd : f(x) ≤ α}
is the α-sublevel set of f ; see Figure 1.9

α

f≤α f≤αf≤α

Figure 1.9: Sublevel set of a non-convex function (left) and a convex func-
tion (right)

It is easy to see from the definition that every sublevel set of a convex
function is convex. Moreover, as a consequence of continuity of f , sublevel
sets are closed. The following (known as the Weierstrass Theorem) just
formalizes an argument that we have made earlier.

Theorem 1.29. Let f : Rd → R be a continuous function, and suppose there is
a nonempty and bounded sublevel set f≤α. Then f has a global minimum.

Proof. As the set (−∞, α] is closed, its pre-image f≤α by the continuous
function f is closed. We know that f—as a continuous function—attains a
minimum over the (non-empty) closed and bounded (= compact) set f≤α

at some x⋆. This x⋆ is also a global minimum as it has value f(x⋆) ≤ α,
while any x /∈ f≤α has value f(x) > α ≥ f(x⋆).
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Note that Theorem 1.29 holds for convex functions as convexity on Rd

implies continuity (Exercise 3).

1.6 Examples

In the following two sections, we give two examples of convex function
minimization tasks that arise from machine learning applications.

1.6.1 Handwritten digit recognition

Suppose you want to write a program that recognizes handwritten deci-
mal digits 0, 1, . . . , 9. You have a set P of grayscale images (28× 28 pixels,
say) that represent handwritten decimal digits, and for each image x ∈ P ,
you know the digit d(x) ∈ {0, . . . , 9} that it represents, see Figure 1.10.
You want to train your program with the set P , and after that, use it to
recognize handwritten digits in arbitrary 28× 28 images.

Figure 1.10: Some training images from the MNIST data set (picture from
http://corochann.com/mnist-dataset-introduction-1138.
html
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The classical approach is the following. We represent an image as a
feature vector x ∈ R784, where xi is the gray value of the i-th pixel (in some
order). During the training phase, we compute a matrix W ∈ R10×784 and
then use the vector y = Wx ∈ R10 to predict the digit seen in an arbitrary
image x. The idea is that yj, j = 0, . . . , 9 corresponds to the probability
of the digit being j. This does not work directly, since the entries of y
may be negative and generally do not sum up to 1. But we can convert y
to a vector z of actual probabilities, such that a small yj leads to a small
probability zj and a large yj to a large probability zj . How to do this is not
canonical, but here is a well-known formula that works:

zj = zj(y) =
eyj∑9
k=0 e

yk
. (1.12)

The classification then simply outputs digit j with probability zj . The
matrix W is chosen such that it (approximately) minimizes the classifica-
tion error on the training set P . Again, it is not canonical how we measure
classification error; here we use the following loss function to evaluate the
error induced by a given matrix W .

ℓ(W ) = −
∑
x∈P

ln
(
zd(x)(Wx)

)
=
∑
x∈P

(
ln
( 9∑

k=0

e(Wx)k
)
− (Wx)d(x)

)
. (1.13)

This function “punishes” images for which the correct digit j has low
probability zj (corresponding to a significantly negative value of log zj).
In an ideal world, the correct digit would always have probability 1, re-
sulting in ℓ(W ) = 0. But under (1.12), probabilities are always strictly
between 0 and 1, so we have ℓ(W ) > 0 for all W .

Exercise 6 asks you to prove that ℓ is convex. In Exercise 7, you will
characterize the situations in which ℓ has a global minimum.

1.6.2 Master’s Admission

The computer science department of a well known Swiss university is ad-
mitting top international students to its MSc program, in a competitive
application process. Applicants are submitting various documents (GPA,
TOEFL test score, GRE test scores, reference letters,. . . ). During the evalu-
ation of an application, the admission committee would like to compute a
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(rough) forecast of the applicant’s performance in the MSc program, based
on the submitted documents.1

Data on the actual performance of students admitted in the past is
available. To keep things simple in the following example, Let us base
the forecast on GPA (grade point average) and TOEFL (Test of English as
a Foreign Language) only. GPA scores are normalized to a scale with a
minimum of 0.0 and a maximum of 4.0, where admission starts from 3.5.
TOEFL scores are on an integer scale between 0 and 120, where admission
starts from 100.

Table 1.1 contains the known data. GGPA (graduation grade point av-
erage on a Swiss grading scale) is the average grade obtained by an ad-
mitted student over all courses in the MSc program. The Swiss scale goes
from 1 to 6 where 1 is the lowest grade, 6 is the highest, and 4 is the lowest
passing grade.

GPA TOEFL GGPA
3.52 100 3.92
3.66 109 4.34
3.76 113 4.80
3.74 100 4.67
3.93 100 5.52
3.88 115 5.44
3.77 115 5.04
3.66 107 4.73
3.87 106 5.03
3.84 107 5.06

Table 1.1: Data for 10 admitted students: GPA and TOEFL scores (at time
of application), GGPA (at time of graduation)

As in Section 1.4.2, we are attempting a linear regression with least
squares fit, i.e. we are making the hypothesis that

GGPA ≈ w0 + w1 ·GPA+ w2 · TOEFL. (1.14)

However, in our scenario, the relevant GPA scores span a range of only
0.5 while the relevant TOEFL scores span a range of 20. The resulting least

1Any resemblance to real departments is purely coincidental. Also, no serious depart-
ment will base performance forecasts on data from 10 students, as we will do it here.
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squares objective would be somewhat ugly; we already saw this in our
previous example (1.9), where the data points had large second coordinate,
resulting in the w1-scale being very different from the w2-scale. This time,
we normalize first, so that w1 und w2 become comparable and allow us to
understand the relative influences of GPA and TOEFL.

The general setting is this: we have n inputs x1, . . . ,xn, where each vec-
tor xi ∈ Rd consists of d input variables; then we have n outputs y1, . . . , yn ∈
R. Each pair (xi, yi) is an observation. In our case, d = 2, n = 10, and for
example, ((3.93, 100), 5.52) is an observation (of a student doing very well).

With variable weights w0,w = (w1, . . . , wd) ∈ Rd, we plan to minimize
the least squares objective

f(w0,w) =
n∑

i=1

(w0 +w⊤xi − yi)
2.

We first want to assume that the inputs and outputs are centered, mean-
ing that

1

n

n∑
i=1

xi = 0,
1

n

n∑
i=1

yi = 0.

This can be achieved by simply subtracting the mean x̄ = 1
n

∑n
i=1 xi from

every input and the mean ȳ = 1
n

∑n
i=1 yi from every output. In our exam-

ple, this yields the numbers in Table 1.2 (left).

GPA TOEFL GGPA
-0.24 -7.2 -0.94
-0.10 1.8 -0.52
-0.01 5.8 -0.05
-0.02 -7.2 -0.18
0.17 -7.2 0.67
0.12 7.8 0.59
0.01 7.8 0.19

-0.10 -0.2 -0.12
0.11 -1.2 0.17
0.07 -0.2 0.21

GPA TOEFL GGPA
-2.04 -1.28 -0.94
-0.88 0.32 -0.52
-0.05 1.03 -0.05
-0.16 -1.28 -0.18
1.42 -1.28 0.67
1.02 1.39 0.59
0.06 1.39 0.19

-0.88 -0.04 -0.12
0.89 -0.21 0.17
0.62 -0.04 0.21

Table 1.2: Centered observations (left); normalized inputs (right)
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After centering, the global minimum (w⋆
0,w

⋆) of the least squares ob-
jective satisfies w⋆

0 = 0 while w⋆ is unaffected by centering (Exercise 11),
so that we can simply omit the variable w0 in the sequel.

Finally, we assume that all d input variables are on the same scale,
meaning that

1

n

n∑
i=1

x2
ij = 1, j = 1, . . . , d.

To achieve this for fixed j (assuming that no variable is 0 in all inputs),

we multiply all xij by s(j) =
√
n/
∑n

i=1 x
2
ij (which, in the optimal solution

w⋆, just multiplies w⋆
j by 1/s(j), an argument very similar to the one in

Exercise 11). For our data set, the resulting normalized data are shown in
Table 1.2 (right). Now the least squares objective (after omitting w0) is

f(w1, w2) =
10∑
i=1

(w1xi1 + w2xi2 − yi)
2

≈ 10w2
1 + 10w2

2 + 1.99w1w2 − 8.7w1 − 2.79w2 + 2.09.

This is minimized at

w⋆ = (w⋆
1, w

⋆
2) ≈ (0.43, 0.097),

so if our initial hypothesis (1.14) is true, we should have

yi ≈ y⋆i = 0.43xi1 + 0.097xi2 (1.15)

in the normalized data. This can quickly be checked, and the results are
not perfect, but not too bad, either; see Table 1.3 (ignore the last column
for now).

What we also see from (1.15) is that the first input variable (GPA) has a
much higher influence on the output (GGPA) than the second one (TOEFL).
In fact, if we drop the second one altogether, we obtain outputs z⋆i (last col-
umn in Table 1.3) that seem equivalent to the predicted outputs y⋆i within
the level of noise that we have anyway.

We conclude that TOEFL scores are probably not indicative for the per-
formance of admitted students, so the admission committee should not
care too much about them. Requiring a minimum score of 100 might make
sense, but whenever an applicant reaches at least this score, the actual
value does not matter.
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xi1 xi2 yi y⋆i z⋆i
-2.04 -1.28 -0.94 -1.00 -0.87
-0.88 0.32 -0.52 -0.35 -0.37
-0.05 1.03 -0.05 0.08 -0.02
-0.16 -1.28 -0.18 -0.19 -0.07
1.42 -1.28 0.67 0.49 0.61
1.02 1.39 0.59 0.57 0.44
0.06 1.39 0.19 0.16 0.03

-0.88 -0.04 -0.12 -0.38 -0.37
0.89 -0.21 0.17 0.36 0.38
0.62 -0.04 0.21 0.26 0.27

Table 1.3: Outputs y⋆i predicted by the linear model (1.15) and by the model
z⋆i = 0.43xi1 that simply ignores the second input variable

The LASSO. So far, we have computed linear functions y = 0.43x1 +
0.097x2 and z = 0.43x1 that “explain” the historical data from Table 1.1.
However, they are optimized to fit the historical data, not the future. We
may have overfitting. This typyically leads to unrealiable predictions of
high variance in the future. Also, ideally, we would like non-indicative
variables (such as the TOEFL in our example) to actually have weight 0,
so that the model “knows” the important variables and is therefore better
to interpret.

The question is: how can we in general improve the quality of our fore-
cast? There are various heuristics to identify the “important” variables’
(subset selection). A very simple one is just to forget about weights close
to 0 in the least squares solution. However, for this, we need to define
what it means to be close to 0; and it may happen that small changes in the
data lead to different variables being dropped if their weights are around
the threshold. On the other end of the spectrum, there is best subset selec-
tion where we compute the least squares solution subject to the constraint
that there are at most k nonzero weights, for some k that we believe is the
right number of important variables. This is NP-hard, though.

A popular approach that in many cases improves forecasts and at the
same time identifies important variables has been suggested by Tibshirani
in 1996 [Tib96]. Instead of minimizing the least squares objective glob-
ally, it is minimized over a suitable ℓ1-ball (ball in the 1-norm ∥w∥1 =
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∑d
j=1 |wj|):

minimize
∑n

i=1 ∥w⊤xi − yi∥2
subject to ∥w∥1 ≤ R, (1.16)

where R ∈ R+ is some parameter. In our case, if we for example

minimize f(w1, w2) = 10w2
1 + 10w2

2 + 1.99w1w2 − 8.7w1 − 2.79w2 + 2.09
subject to |w1|+ |w2| ≤ 0.2,

(1.17)
we obtain weights w⋆ = (w⋆

1, w
⋆
2) = (0.2, 0): the non-indicative TOEFL

score has disappeared automatically! For R = 0.3, the same happens (with
w⋆

1 = 0.3, respectively). For R = 0.4, the TOEFL score starts creeping
back in: we get (w⋆

1, w
⋆
2) ≈ (0.36, 0.036). For R = 0.5, we have (w⋆

1, w
⋆
2) ≈

(0.41, 0.086), while for R = 0.6 (and all larger values of R), we recover the
original solution (w⋆

1, w
⋆
2) = (0.43, 0.097).

It is important to understand that using the “fixed” weights (which
may be significantly shrunken), we make predictions worse on the histori-
cal data (this must be so, since least squares was optimal for the historical
data). But future predictions may benefit (a lot). To quantify this benefit,
we need to make statistical assumptions about future observations; this is
beyond the scope of our treatment here.

The phenomenon that adding a constraint on ∥w∥1 tends to set weights
to 0 is not restricted to d = 2. The constrained minimization problem (1.16)
is called the LASSO (least absolute shrinkage and selection operator) and
has the tendency to assign weights of 0 and thus to select a subset of input
variables, where R controls how aggressive the selection is.

In our example, it is easy to get an intuition why this works. Let us look
at the case R = 0.2. The smallest value attainable in (1.17) is the smallest α
such that that the (elliptical) sublevel set f≤α of the least squares objective
f still intersects the ℓ1-ball {(w1, w2) : |w1|+|w2| ≤ 0.2}. This smallest value
turns out to be α = 0.75, see Figure 1.11. For this value of α, the sublevel
set intersects the ℓ1-ball exactly in one point, namely (0.2, 0).

At (0.2, 0), the ellipse {(w1, w2) : f(w1, w2) = α} is “vertical enough”
to just intersect the corner of the ℓ1-ball. The reason is that the center of
the ellipse is relatively close to the w1-axis, when compared to its size. As
R increases, the relevant value of α decreases, the ellipse gets smaller and
less vertical around the w1-axis; until it eventually stops intersecting the ℓ1-
ball {(w1, w2) : |w1|+ |w2| ≤ R} in a corner (dashed situation in Figure 1.11,
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(0.43, 0.097)

a

b

|w1|+ |w2| ≤ 0.2

10w2
1 + 10w2

2 + 1.99w1w2 − 8.7w1 − 2.79w2 + 2.09 = 0.75

Figure 1.11: Lasso

for R = 0.4).
Even though we have presented a toy example in this section, the back-

ground is real. The theory of admission and in particular performance
forecasts has been developed in a recent PhD thesis by Zimmermann [Zim16].

1.7 Exercises

Exercise 1. Prove that a differentiable function is continuous!

Exercise 2. Prove Jensen’s inequality (Lemma 1.12)!

Exercise 3. Prove that a convex function (with dom(f) open) is continuous
(Lemma 1.13)!

Hint: First prove that a convex function f is bounded on any cube C =
[l1, u1] × [l2, u2] × · · · × [ld, ud] ⊆ dom(f), with the maximum value occurring
on some corner of the cube (a point z such that zi ∈ {li, ui} for all i). Then use
this fact to show that—given x ∈ dom(f) and ε > 0—all y in a sufficiently
small ball around x satisfy |f(y)− f(x)| < ε.
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Exercise 4. Prove that the function dy : Rd → R, x 7→ ∥x − y∥2 is strictly
convex for any y ∈ Rd. (Use Lemma 1.24.)

Exercise 5. Prove Lemma 1.18! Can (ii) be generalized to show that for two
convex functions f, g, the function f ◦ g is convex as well?

Exercise 6. Consider the function ℓ defined in (1.13). Prove that ℓ is convex!

Exercise 7. Consider the logistic regression problem with two classes. Given a
training set P consisting of datapoint and label pairs (x, y) where x ∈ Rd and
y ∈ {−1,+1}, we define our loss ℓ for weight vector w ∈ Rd to be

ℓ(w) =
∑

(x,y)∈P

− ln
(
z(yw⊤x)

)
,

where z(s) = 1/(1 + exp(−s)). This loss function is in fact a simplification of
(1.13) when we only have two classes.

We say that the weight vector w is a separator for P if for all (x, y) ∈ P ,

y(w⊤x) ≥ 0 .

A separator is said to be trivial if for all (x, y) ∈ P ,

y(w⊤x) = 0 .

For example w = 0 is a trivial separator. Depending on the data P , there may be
other trivial separators.

Prove the following statement: the function ℓ has a global minimum if and
only if all separators are trivial.

Exercise 8. Prove that the function f(x) = ∥x∥1 =
∑d

i=1 |xi| (ℓ1-norm) is con-
vex!

Exercise 9. Let f : dom(f) → R be twice differentiable. For fixed x,y ∈
dom(f), consider the univariate function h(t) = f(x+ t(y−x)) over a suitable
open interval dom(h) ⊇ [0, 1] such that x + t(y − x) ∈ dom(f) for all t ∈
dom(h). Let us abbreviate v = y − x. We already know that h′(t) = ∇f(x +
tv)⊤v for t ∈ dom(h). Prove that

h′′(t) = v⊤∇2f(x+ tv)v, t ∈ dom(h).
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Exercise 10. A seminorm is a function f : Rd → R satisfying the following two
properties for all x,y ∈ Rd and all λ ∈ R.

(i) f(λx) = |λ|f(x),

(ii) f(x+ y) ≤ f(x) + f(y) (triangle inequality).

Prove that every seminorm is convex!

Exercise 11. Suppose that we have centered observations (xi, yi) such that
∑n

i=1 xi =
0,
∑n

i=1 yi = 0. Let w⋆
0,w

⋆ be the global minimum of the least squares objective

f(w0,w) =
n∑

i=1

(w0 +w⊤xi − yi)
2.

Prove that w⋆
0 = 0. Also, suppose x′

i and y′i are such that for all i, x′
i = xi + q,

y′i = yi + r. Show that (w0,w) minimizes f if and only if (w0 − w⊤q + r,w)
minimizes

f ′(wo,w) =
n∑

i=1

(w0 +w⊤x′
i − y′i)

2.
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2.1 Overview

The gradient descent algorithm (including variants such as projected or
stochastic gradient descent) is the most useful workhorse for minimizing
loss functions in practice. The algorithm is extremely simple and surpris-
ingly robust in the sense that it also works well for many loss functions
that are not convex. While it is easy to construct (artificial) non-convex
functions on which gradient descent goes completely astray, such func-
tions do not seem to be typical in practice; however, understanding this
on a theoretical level is an open problem, and only few results exist in this
direction.

The vast majority of theoretical results concerning the performance of
gradient descent hold for convex functions only. In this and the following
chapters, we will present some of these results, but maybe more impor-
tantly, the main ideas behind them. As it turns out, the number of ideas
that we need is rather small, and typically, they are shared between dif-
ferent results. Our approach is therefore to fully develop each idea once,
in the context of a concrete result. If the idea reappears, we will typically
only discuss the changes that are necessary in order to establish a new re-
sult from this idea. In order to avoid boredom from ideas that reappear
too often, we omit other results and variants that one could also get along
the lines of what we discuss.

Let f : Rd → R be a convex and differentiable function. We also assume
that f has a global minimum x⋆, and the goal is to find (an approximation
of) x⋆. This usually means that for a given ε > 0, we want to find x ∈ Rd

such that
f(x)− f(x⋆) < ε.

Notice that we are not making an attempt to get near to x⋆ itself — there
can be several minima x⋆

1 ̸= x⋆ ̸= x⋆
2 with f(x⋆

1) = f(x⋆
2) = f(x⋆).

Table 2.1 gives an overview of the results that we will prove. They con-
cern several variants of gradient descent as well as several classes of func-
tions. The significance of each algorithm and function class will briefly be
discussed when it first appears.

In Chapter 6, we will also look at gradient descent on functions that
are not convex. In this case, provably small approximation error can still
be obtained for some particularly well-behaved functions (we will give an
example). For smooth (but not necessarily convex) functions, we gener-
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Lipschitz
convex

functions

smooth
convex

functions

strongly
convex

functions

smooth &
strongly
convex

functions
gradient
descent

Thm. 2.1
O(1/ε2)

Thm. 2.8
O(1/ε)

Thm. 2.14
O(log(1/ε))

accelerated
gradient
descent

Thm. 2.9
O(1/

√
ε)

projected
gradient
descent

Thm. 3.2
O(1/ε2)

Thm. 3.4
O(1/ε)

Thm. 3.5
O(log(1/ε))

proximal
gradient
descent

Thm. 3.14
O(1/ε)

subgradient
descent

Thm. 4.7
O(1/ε2)

Thm. 4.11
O(1/ε)

stochastic
gradient
descent

Thm. 5.1
O(1/ε2)

Thm. 5.2
O(1/ε)

Table 2.1: Results on gradient descent. Below each theorem, the number
of steps is given which the respective variant needs on the respective func-
tion class to achieve additive approximation error at most ε.

ally cannot show convergence in error, but a (much) weaker convergence
property still holds.

2.2 The algorithm

Gradient descent is a very simple iterative algorithm for finding the de-
sired approximation x, under suitable conditions that we will get to. It
computes a sequence x0,x1, . . . of vectors such that x0 is arbitrary, and for
each t ≥ 0, xt+1 is obtained from xt by making a step of vt ∈ Rd:

xt+1 = xt + vt.
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How do we choose vt in order to get closer to optimality, meaning that
f(xt+1) < f(xt)?

From differentiability of f at xt (Definition 1.5), we know that for ∥vt∥
tending to 0,

f(xt + vt) = f(xt) +∇f(xt)
⊤vt + r(vt)︸ ︷︷ ︸

o(∥vt∥)

≈ f(xt) +∇f(xt)
⊤vt.

To get any decrease in function value at all, we have to choose vt such that
∇f(xt)

⊤vt < 0. But among all steps vt of the same length, we should in
fact choose the one with the most negative value of ∇f(xt)

⊤vt, so that we
maximize our decrease in function value. This is achieved when vt points
into the direction of the negative gradient −∇f(xt). But as differentiability
guarantees decrease only for small steps, we also want to control how far
we go along the direction of the negative gradient.

Therefore, the step of gradient descent is defined by

xt+1 := xt − γ∇f(xt). (2.1)

Here, γ > 0 is a fixed stepsize, but it may also make sense to have γ depend
on t. For now, γ is fixed. We hope that for some reasonably small integer
t, in the t-th iteration we get that f(xt) − f(x⋆) < ε; see Figure 2.1 for an
example.

Now it becomes clear why we are assuming that dom(f) = Rd: The
update step (2.1) may in principle take us “anywhere”, so in order to get
a well-defined algorithm, we want to make sure that f is defined and dif-
ferentiable everywhere.

The choice of γ is critical for the performance. If γ is too small, the
process might take too long, and if γ is too large, we are in danger of
overshooting. It is not clear at this point whether there is a “right” stepsize.

2.3 Vanilla analysis

The first-order characterization of convexity provides us with a way to
bound terms of the form f(xt)− f(x⋆): With x = xt,y = x⋆, (1.3) gives us

f(xt)− f(x⋆) ≤ ∇f(xt)
⊤(xt − x⋆). (2.2)
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x0

x1

x2

x3
x4

x5

x1

x2

4

3

Figure 2.1: Example run of gradient descent on the quadratic function
f(x1, x2) = 2(x1 − 4)2 + 3(x2 − 3)2 with global minimum (4, 3); we have
chosen x0 = (0, 0), γ = 0.1; dashed lines represent level sets of f (points of
constant f -value)

So we have reduced the problem to the one of bounding f(xt)
⊤(xt − x⋆),

and this is what we do next.
Let xt be some iterate in the sequence (2.1). We abbreviate gt := ∇f(xt).

By definition of gradient descent (2.1), gt = (xt − xt+1)/γ, hence

g⊤
t (xt − x⋆) =

1

γ
(xt − xt+1)

⊤(xt − x⋆). (2.3)

Now we apply (somewhat out of the blue, but this will clear up in the next
step) the basic vector equation 2v⊤w = ∥v∥2+ ∥w∥2−∥v−w∥2 (a.k.a. the
cosine theorem) to rewrite the same expression as

g⊤
t (xt − x⋆) =

1

2γ

(
∥xt − xt+1∥2 + ∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

)
=

1

2γ

(
γ2∥gt∥2 + ∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

)
=

γ

2
∥gt∥2 +

1

2γ

(
∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

)
(2.4)
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Next we sum this up over the iterations t, so that the latter two terms in
the bracket cancel in a telescoping sum.

T−1∑
t=0

g⊤
t (xt − x⋆) =

γ

2

T−1∑
t=0

∥gt∥2 +
1

2γ

(
∥x0 − x⋆∥2 − ∥xT − x⋆∥2

)
≤ γ

2

T−1∑
t=0

∥gt∥2 +
1

2γ
∥x0 − x⋆∥2 (2.5)

Now we recall from (2.2) that

f(xt)− f(x⋆) ≤ g⊤
t (xt − x⋆).

Hence we further obtain

T−1∑
t=0

(f(xt)− f(x⋆)) ≤ γ

2

T−1∑
t=0

∥gt∥2 +
1

2γ
∥x0 − x⋆∥2. (2.6)

This gives us an upper bound for the average error f(xt) − f(x⋆), t =
0, . . . , T − 1, hence in particular for the error incurred by the iterate with
the smallest function value. The last iterate is not necessarily the best one:
gradient descent with fixed stepsize γ will in general also make steps that
overshoot and actually increase the function value; see Exercise 15(i).

The question is of course: is this result any good? In general, the an-
swer is no. A dependence on ∥x0 − x⋆∥ is to be expected (the further we
start from x⋆, the longer we will take); the dependence on the squared gra-
dients ∥gt∥2 is more of an issue, and if we cannot control them, we cannot
say much.

2.4 Lipschitz convex functions: O(1/ε2) steps

Here is the cheapest “solution” to squeeze something out of the vanilla
analysis (2.5): let us simply assume that all gradients of f are bounded
in norm. Equivalently, such functions are Lipschitz continuous over Rd

by Theorem 1.9. (A small subtetly here is that in the situation of real-
valued functions, Theorem 1.9 is talking about the spectral norm of the
(1 × d)-matrix (or row vector) ∇f(x)⊤, while below, we are talking about
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the Euclidean norm of the (column) vector ∇f(x); but these two norms are
the same; see Exercise 12.)

Assuming bounded gradients rules out many interesting functions,
though. For example, f(x) = x2 (a supermodel in the world of convex
functions) already doesn’t qualify, as ∇f(x) = 2x—and this is unbounded
as x tends to infinity. But let’s care about supermodels later.

Theorem 2.1. Let f : Rd → R be convex and differentiable with a global mini-
mum x⋆; furthermore, suppose that ∥x0 − x⋆∥ ≤ R and ∥∇f(x)∥ ≤ B for all x.
Choosing the stepsize

γ :=
R

B
√
T
,

gradient descent (2.1) yields

1

T

T−1∑
t=0

(f(xt)− f(x⋆)) ≤ RB√
T
.

Proof. This is a simple calculation on top of (2.6): after plugging in the
bounds ∥x0 − x⋆∥ ≤ R and ∥gt∥ ≤ B, we get

T−1∑
t=0

(f(xt)− f(x⋆)) ≤ γ

2
B2T +

1

2γ
R2,

so want to choose γ such that

q(γ) =
γ

2
B2T +

R2

2γ

is minimized. Setting the derivative to zero yields the above value of γ,
and q(R/(B

√
T )) = RB

√
T . Dividing by T , the result follows.

This means that in order to achieve minT−1
t=0 (f(xt)−f(x⋆)) ≤ ε, we need

T ≥ R2B2

ε2

many iterations. This is not particularly good when it comes to concrete
numbers (think of desired error ε = 10−6 when R,B are somewhat larger).
On the other hand, the number of steps does not depend on d, the di-
mension of the space. This is very important since we often optimize in

44



high-dimensional spaces. Of course, R and B may depend on d, but in
many relevant cases, this dependence is mild.

What happens if we don’t know R and/or B? An idea is to “guess”
R and B, run gradient descent with T and γ resulting from the guess,
check whether the result has absolute error at most ε, and repeat with a
different guess otherwise. This fails, however, since in order to compute
the absolute error, we need to know f(x⋆) which we typically don’t. But
Exercise 16 asks you to show that knowing R is sufficient.

2.5 Smooth convex functions: O(1/ε) steps

Our workhorse in the vanilla analysis was the first-order characterization
of convexity: for all x,y ∈ dom(f), we have

f(y) ≥ f(x) +∇f(x)⊤(y − x). (2.7)

Next we want to look at functions for which f(y) can be bounded from
above by f(x)+∇f(x)⊤(y−x), up to at most quadratic error. The following
definition applies to all differentiable functions, convexity is not required.

Definition 2.2. Let f : dom(f) → R be a differentiable function, X ⊆ dom(f)
convex and L ∈ R+. Function f is called smooth (with parameter L) over X if

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
L

2
∥x− y∥2, ∀x,y ∈ X. (2.8)

If X = dom(f), f is simply called smooth.

Recall that (2.7) says that for any x, the graph of f is above its tangential
hyperplane at (x, f(x)). In contrast, (2.8) says that for any x ∈ X , the
graph of f is below a not-too-steep tangential paraboloid at (x, f(x)); see
Figure 2.2.

This notion of smoothness has become standard in convex optimiza-
tion, but the naming is somewhat unfortunate, since there is an (older)
definition of a smooth function in mathematical analysis where it means a
function that is infinitely often differentiable.

We have the following simple characterization of smoothness.

Lemma 2.3 (Exercise 13). Suppose that dom(f) is open and convex, and that
f : dom(f) → R is differentiable. Let L ∈ R+. Then the following two state-
ments are equivalent.
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x y

f(y)

f(x) +∇f(x)>(y − x)

f(x) +∇f(x)>(y − x) + L
2
‖x− y‖2

Figure 2.2: A smooth convex function

(i) f is smooth with parameter L.

(ii) g defined by g(x) = L
2
x⊤x− f(x) is convex over dom(g) := dom(f).

Let us discuss some cases. If L = 0, (2.7) and (2.8) together require that

f(y) = f(x) +∇f(x)⊤(y − x), ∀x,y ∈ dom(f),

meaning that f is an affine function. A simple calculation shows that our
supermodel function f(x) = x2 is smooth with parameter L = 2:

f(y) = y2 = x2 + 2x(y − x) + (x− y)2

= f(x) + f ′(x)(y − x) +
L

2
(x− y)2.

More generally, we also claim that all quadratic functions of the form
f(x) = x⊤Qx + b⊤x + c are smooth, where Q is a (d × d) matrix, b ∈ Rd

and c ∈ R. Because x⊤Qx = x⊤Q⊤x, we get that f(x) = x⊤Qx = 1
2
x⊤(Q+
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Q⊤)x, where 1
2
(Q + Q⊤) is symmetric. Therefore, we can assume without

loss of generality that Q is symmetric, i.e., it suffices to show that quadratic
functions defined by symmetric functions are smooth.

Lemma 2.4 (Exercise 14). Let f(x) = x⊤Qx+b⊤x+c, where Q is a symmetric
(d × d) matrix, b ∈ Rd, c ∈ R. Then f is smooth with parameter 2 ∥Q∥, where
∥Q∥ is the spectral norm of Q (Definition 1.2).

The (univariate) convex function f(x) = x4 is not smooth (over R): at
x = 0, condition (2.8) reads as

y4 ≤ L

2
y2,

and there is obviously no L that works for all y. The function is smooth,
however, over any bounded set X (Exercise 19).

In general—and this is the important message here—only functions of
asymptotically at most quadratic growth can be smooth. It is tempting to
believe that any such “subquadratic” function is actually smooth, but this
is not true. Exercise 15(iii) provides a counterexample.

While bounded gradients are equivalent to Lipschitz continuity of f
(Theorem 1.9), smoothness turns out to be equivalent to Lipschitz conti-
nuity of ∇f—if f is convex over the whole space. In general, Lipschitz
continuity of ∇f implies smoothness, but not the other way around.

Lemma 2.5. Let f : Rd → R be convex and differentiable. The following two
statements are equivalent.

(i) f is smooth with parameter L.

(ii) ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all x,y ∈ Rd.

We will derive the direction (ii)⇒(i) as Lemma 6.1 in Chapter 6 (which
neither requires convexity nor domain Rd). The other direction is a bit
more involved. A proof of the equivalence can be found in the lecture
slides of L. Vandenberghe, http://www.seas.ucla.edu/˜vandenbe/
236C/lectures/gradient.pdf.

The operations that we have shown to preserve convexity (Lemma 1.18)
also preserve smoothness. This immediately gives us a rich collection of
smooth functions.
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Lemma 2.6 (Exercise 17).

(i) Let f1, f2, . . . , fm be smooth with parameters L1, L2, . . . , Lm, and let
λ1, λ2, . . . , λm ∈ R+. Then the function f :=

∑m
i=1 λifi is smooth with

parameter
∑m

i=1 λiLi over dom(f) :=
⋂m

i=1 dom(fi).

(ii) Let f : dom(f) → R with dom(f) ⊆ Rd be smooth with parameter L,
and let g : Rm → Rd be an affine function, meaning that g(x) = Ax + b,
for some matrix A ∈ Rd×m and some vector b ∈ Rd. Then the function
f ◦ g (that maps x to f(Ax + b)) is smooth with parameter L∥A∥2 on
dom(f ◦ g) := {x ∈ Rm : g(x) ∈ dom(f)}, where ∥A∥ is the spectral
norm of A (Definition 1.2).

We next show that for smooth convex functions, the vanilla analysis
provides a better bound than it does under bounded gradients. In partic-
ular, we are now able to serve the supermodel f(x) = x2.

We start with a preparatory lemma showing that gradient descent (with
suitable stepsize γ) makes progress in function value on smooth functions
in every step. We call this sufficient decrease, and maybe surprisingly, it
does not require convexity.

Lemma 2.7. Let f : Rd → R be differentiable and smooth with parameter L
according to (2.8). With

γ :=
1

L
,

gradient descent (2.1) satisfies

f(xt+1) ≤ f(xt)−
1

2L
∥∇f(xt)∥2, t ≥ 0.

More specifically, this already holds if f is smooth with parameter L over the line
segment connecting xt and xt+1.

Proof. We apply the smoothness condition (2.8) and the definition of gra-
dient descent that yields xt+1 − xt = −∇f(xt)/L. We compute

f(xt+1) ≤ f(xt) +∇f(xt)
⊤(xt+1 − xt) +

L

2
∥xt − xt+1∥2

= f(xt)−
1

L
∥∇f(xt)∥2 +

1

2L
∥∇f(xt)∥2

= f(xt)−
1

2L
∥∇f(xt)∥2.
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Theorem 2.8. Let f : Rd → R be convex and differentiable with a global min-
imum x⋆; furthermore, suppose that f is smooth with parameter L according
to (2.8). Choosing stepsize

γ :=
1

L
,

gradient descent (2.1) yields

f(xT )− f(x⋆) ≤ L

2T
∥x0 − x⋆∥2, T > 0.

Proof. We apply sufficient decrease (Lemma 2.7) to bound the sum of the
∥gt∥2 = ∥∇f(xt)∥2 after step (2.6) of the vanilla analysis as follows:

1

2L

T−1∑
t=0

∥∇f(xt)∥2 ≤
T−1∑
t=0

(f(xt)− f(xt+1)) = f(x0)− f(xT ). (2.9)

With γ = 1/L, (2.6) then yields

T−1∑
t=0

(f(xt)− f(x⋆)) ≤ 1

2L

T−1∑
t=0

∥∇f(xt)∥2 +
L

2
∥x0 − x⋆∥2

≤ f(x0)− f(xT ) +
L

2
∥x0 − x⋆∥2,

equivalently
T∑
t=1

(f(xt)− f(x⋆)) ≤ L

2
∥x0 − x⋆∥2. (2.10)

Because f(xt+1) ≤ f(xt) for each 0 ≤ t ≤ T by Lemma 2.7, by taking the
average we get that

f(xT )− f(x⋆) ≤ 1

T

T∑
t=1

(f(xt)− f(x⋆)) ≤ L

2T
∥x0 − x⋆∥2.

This improves over the bounds of Theorem 2.1. With R2 := ∥x0 − x⋆∥2,
we now only need

T ≥ R2L

2ε
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iterations instead of R2B2/ε2 to achieve absolute error at most ε.
Exercise 18 shows that we do not need to know L to obtain the same

asymptotic runtime.
Interestingly, the bound in Theorem 2.8 can be improved—but not by

much. Fixing L and R = ∥x0 − x⋆∥, the bound is of the form O(1/T ). Lee
and Wright have shown that a better upper bound of o(1/T ) holds, but
that for any fixed δ > 0, a lower bound of Ω(1/T 1+δ) also holds [LW19].

2.6 Acceleration for smooth convex functions:
O(1/

√
ε) steps

Let’s take a step back, forget about gradient descent for a moment, and just
think about what we actually use the algorithm for: we are minimizing a
differentiable convex function f : Rd → R, where we are assuming that
we have acccess to the gradient vector ∇f(x) at any given point x.

But is it clear that gradient descent is the best algorithm for this task?
After all, it is just some algorithm that is using gradients to make progress
locally, but there might be other (and better) such algorithms. Let us define
a first-order method as an algorithm that only uses gradient information to
minimize f . More precisely, we allow a first-order method to access f only
via an oracle that is able to return values of f and ∇f at arbitrary points.
Gradient descent is then just a specific first-order method.

For any class of convex functions, one can then ask a natural ques-
tion: What is the best first-order method for the function class, the one that
needs the smallest number of oracle calls in the worst case, as a function
of the desired error ε? In particular, is there a method that asymptotically
beats gradient descent?

There is an interesting history here: in 1979, Nemirovski and Yudin
have shown that every first-order method needs in the worst case Ω(1/

√
ε)

steps (gradient evaluations) in order to achieve an additive error of ε on
smooth functions [NY83]. Recall that we have seen an upper bound of
O(1/ε) for gradient descent in the previous section; in fact, this upper
bound was known to Nemirovsky and Yudin already. Reformulated in the
language of the previous section, there is a first-order method (gradient
descent) that attains additive error O(1/T ) after T steps, and all first-order
methods have additive error Ω(1/T 2) in the worst case.
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The obvious question resulting from this was whether there actually
exists a first-order method that has additive error O(1/T 2) after T steps, on
every smooth function. This was answered in the affirmative by Nesterov
in 1983 when he proposed an algorithm that is now known as (Nesterov’s)
accelerated gradient descent [Nes83]. Nesterov’s book (Sections 2.1 and 2.2)
is a comprehensive source for both lower and upper bound [Nes18].

It is not easy to understand why the accelerated gradient descent algo-
rithm is an optimal first-order method, and how Nesterov even arrived at
it. A number of alternative derivations of optimal algorithms have been
given by other authors, usually claiming that they provide a more natural
or easier-to-grasp approach. However, each alternative approach requires
some understanding of other things, and there is no well-established “sim-
plest approach”. Here, we simply throw the algorithm at the reader, with-
out any attempt to motivate it beyond some obvious words. Then we
present a short proof that the algorithm is indeed optimal.

Let f : Rd → R be convex, differentiable, and smooth with parame-
ter L. Accelerated gradient descent is the following algorithm: choose z0 =
y0 = x0 arbitrary. For t ≥ 0, set

yt+1 := xt −
1

L
∇f(xt), (2.11)

zt+1 := zt −
t+ 1

2L
∇f(xt), (2.12)

xt+1 :=
t+ 1

t+ 3
yt+1 +

2

t+ 3
zt+1. (2.13)

This means, we are performing a normal “smooth step” from xt to obtain
yt+1 and a more aggressive step from zt to get zt+1. The next iterate xt+1

is a weighted average of yt+1 and zt+1, where we compensate for the more
aggressive step by giving zt+1 a relatively low weight.

Theorem 2.9. Let f : Rd → R be convex and differentiable with a global min-
imum x⋆; furthermore, suppose that f is smooth with parameter L according
to (2.8). Accelerated gradient descent (2.11), (2.12), and (2.13), yields

f(yT )− f(x⋆) ≤ 2L ∥z0 − x⋆∥2
T (T + 1)

, T > 0.

Comparing this bound with the one from Theorem 2.8, we see that the
error is now indeed O(1/T 2) instead of O(1/T ); to reach error at most ε,
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accelerated gradient descent therefore only needs O(1/
√
ε) steps instead

of O(1/ε).

Proof. The analysis uses a potential function argument [BG17]. We assign a
potential Φ(t) to each time t and show that Φ(t + 1) ≤ Φ(t). The potential
is

Φ(t) := t(t+ 1) (f(yt)− f(x⋆)) + 2L ∥zt − x⋆∥2 .
If we can show that the potential always decreases, we get

T (T + 1) (f(yT )− f(x⋆)) + 2L ∥zT − x⋆∥2︸ ︷︷ ︸
Φ(T )

≤ 2L ∥z0 − x⋆∥2︸ ︷︷ ︸
Φ(0)

,

from which the statement immediately follows. For the argument, we
need three well-known ingredients: (i) sufficient decrease (Lemma 2.7) for
step (2.11) with γ = 1/L:

f(yt+1) ≤ f(xt)−
1

2L
∥∇f(xt)∥2; (2.14)

(ii) the vanilla analysis (Section 2.3) for step (2.12) with γ = t+1
2L

, gt =
∇f(xt):

g⊤
t (zt − x⋆) =

t+ 1

4L
∥gt∥2 +

L

t+ 1

(
∥zt − x⋆∥2 − ∥zt+1 − x⋆∥2

)
; (2.15)

(iii) convexity:

f(xt)− f(w) ≤ g⊤
t (xt −w), w ∈ Rd. (2.16)

On top of this, we perform some simple calculations next. By defini-
tion, the potentials are

Φ(t+ 1) = t(t+ 1) (f(yt+1)− f(x⋆)) + 2(t+ 1) (f(yt+1)− f(x⋆)) + 2L ∥zt+1 − x⋆∥2

Φ(t) = t(t+ 1) (f(yt )− f(x⋆)) + 2L ∥zt − x⋆∥2

Now,

∆ :=
Φ(t+ 1)− Φ(t)

t+ 1
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can be bounded as follows.

∆ = t (f(yt+1)− f(yt)) + 2 (f(yt+1)− f(x⋆)) +
2L

t+ 1

(
∥zt+1 − x⋆∥2 − ∥zt − x⋆∥2

)
(2.15)
= t (f(yt+1)− f(yt)) + 2 (f(yt+1)− f(x⋆)) +

t+ 1

2L
∥gt∥2 − 2g⊤

t (zt − x⋆)

(2.14)
≤ t (f(xt)− f(yt)) + 2 (f(xt)− f(x⋆))− 1

2L
∥gt∥2 − 2g⊤

t (zt − x⋆)

≤ t (f(xt)− f(yt)) + 2 (f(xt)− f(x⋆))− 2g⊤
t (zt − x⋆)

(2.16)
≤ tg⊤

t (xt − yt) + 2g⊤
t (xt − x⋆)− 2g⊤

t (zt − x⋆)

= g⊤
t ((t+ 2)xt − tyt − 2zt)

(2.13)
= g⊤

t 0 = 0.

Hence, we indeed have Φ(t+ 1) ≤ Φ(t).

2.7 Interlude

Let us get back to the supermodel f(x) = x2 (that is smooth with param-
eter L = 2, as we observed before). According to Theorem 2.8, gradient
descent (2.1) with stepsize γ = 1/2 satisfies

f(xT ) ≤
1

T
x2
0. (2.17)

Here we used that the minimizer is x⋆ = 0. Let us check how good this
bound really is. For our concrete function and concrete stepsize, (2.1) reads
as

xt+1 = xt −
1

2
∇f(xt) = xt − xt = 0,

so we are always done after one step! But we will see in the next section
that this is only because the function is particularly beautiful, and on top of
that, we have picked the best possible smoothness parameter. To simulate
a more realistic situation here, let us assume that we have not looked at the
supermodel too closely and found it to be smooth with parameter L = 4
only (which is a suboptimal but still valid parameter). In this case, γ = 1/4
and (2.1) becomes

xt+1 = xt −
1

4
∇f(xt) = xt −

xt

2
=

xt

2
.
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So, we in fact have

f(xT ) = f
(x0

2T

)
=

1

22T
x2
0. (2.18)

This is still vastly better than the bound of (2.17)! While (2.17) requires
T ≈ x2

0/ε to achieve f(xT ) ≤ ε, (2.18) requires only

T ≈ 1

2
log

(
x2
0

ε

)
,

which is an exponential improvement in the number of steps.

2.8 Smooth and strongly convex functions:
O(log(1/ε)) steps

The supermodel function f(x) = x2 is not only smooth (“not too curved”)
but also strongly convex (“not too flat”). It will turn out that this is the
crucial ingredient that makes gradient descent fast.

Definition 2.10. Let f : dom(f) → R be a convex and differentiable function,
X ⊆ dom(f) convex and µ ∈ R+, µ > 0. Function f is called strongly convex
(with parameter µ) over X if

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µ

2
∥x− y∥2, ∀x,y ∈ X. (2.19)

If X = dom(f), f is simply called strongly convex.

While smoothness according to (2.8) says that for any x ∈ X , the graph
of f is below a not-too-steep tangential paraboloid at (x, f(x)), strong con-
vexity means that the graph of f is above a not-too-flat tangential paraboloid
at (x, f(x)). The graph of a smooth and strongly convex function is there-
fore at every point wedged between two paraboloids; see Figure 2.3.

We can also interpret (2.19) as a strengthening of convexity. In the form
of (2.7), convexity reads as

f(y) ≥ f(x) +∇f(x)⊤(y − x), ∀x,y ∈ dom(f),

and therefore says that every convex function satisfies (2.19) with µ = 0.
In the spirit of Lemma 2.3 for smooth functions, we can characterize

strong convexity via convexity of another function.
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x y

f(y)

f(x) +∇f(x)>(y − x) + µ
2
‖x− y‖2

f(x) +∇f(x)>(y − x) + L
2
‖x− y‖2

Figure 2.3: A smooth and strongly convex function

Lemma 2.11 (Exercise 20). Suppose that dom(f) is open and convex, and that
f : dom(f) → R is differentiable. Let µ ∈ R+. Then the following two state-
ments are equivalent.

(i) f is strongly convex with parameter µ.

(ii) g defined by g(x) = f(x)− µ
2
x⊤x is convex over dom(g) := dom(f).

Lemma 2.12 (Exercise 21). If f : Rd → R is strongly convex with parameter
µ > 0, then f is strictly convex and has a unique global minimum.

The supermodel f(x) = x2 is particularly beautiful since it is both
smooth and strongly convex with the same parameter L = µ = 2 (go-
ing through the calculations in Exercise 14 will reveal this). We can easily
characterize the class of particularly beautiful functions. These are exactly
the ones whose sublevel sets are ℓ2-balls.
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Lemma 2.13 (Exercise 22). Let f : Rd → R be strongly convex with parameter
µ > 0 and smooth with parameter µ. Prove that f is of the form

f(x) =
µ

2
∥x− b∥2 + c,

where b ∈ Rd, c ∈ R.

Once we have a unique global minimum x⋆, we can attempt to prove
that limt→∞ xt = x⋆ in gradient descent. We start from the vanilla analysis
(2.4) and plug in the lower bound g⊤

t (xt−x⋆) = ∇f(xt)
⊤(xt−x⋆) ≥ f(xt)−

f(x⋆) + µ
2
∥xt − x⋆∥2 resulting from strong convexity. We get

f(xt)−f(x⋆) ≤ 1

2γ

(
γ2∥∇f(xt)∥2 + ∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

)
−µ

2
∥xt−x⋆∥2.

(2.20)
Rewriting this yields a bound on ∥xt+1 −x⋆∥2 in terms of ∥xt −x⋆∥2, along
with some “noise” that we still need to take care of:

∥xt+1−x⋆∥2 ≤ 2γ(f(x⋆)−f(xt))+γ2∥∇f(xt)∥2+(1−µγ)∥xt−x⋆∥2. (2.21)

Theorem 2.14. Let f : Rd → R be convex and differentiable. Suppose that f is
smooth with parameter L according to (3.5) and strongly convex with parameter
µ > 0 according to (3.9). Exercise 25 asks you to prove that there is a unique
global minimum x⋆ of f . Choosing

γ :=
1

L
,

gradient descent (2.1) with arbitrary x0 satisfies the following two properties.

(i) Squared distances to x⋆ are geometrically decreasing:

∥xt+1 − x⋆∥2 ≤
(
1− µ

L

)
∥xt − x⋆∥2, t ≥ 0.

(ii) The absolute error after T iterations is exponentially small in T :

f(xT )− f(x⋆) ≤ L

2

(
1− µ

L

)T
∥x0 − x⋆∥2, T > 0.
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Proof. For (i), we show that the noise in (2.21) disappears. By sufficient
decrease (Lemma 2.7), we know that

f(x⋆)− f(xt) ≤ f(xt+1)− f(xt) ≤ − 1

2L
∥∇f(xt)∥2,

and hence the noise can be bounded as follows, using γ = 1/L, multiply-
ing by 2γ and rearranging the terms, we get:

2γ (f(x⋆)− f(xt)) + γ2∥∇f(xt)∥2 ≤ 0,

Hence, (2.21) actually yields

∥xt+1 − x⋆∥2 ≤ (1− µγ)∥xt − x⋆∥2 =
(
1− µ

L

)
∥xt − x⋆∥2

and
∥xT − x⋆∥2 ≤

(
1− µ

L

)T
∥x0 − x⋆∥2.

The bound in (ii) follows from smoothness (2.8), using ∇f(x⋆) = 0
(Lemma 1.22):

f(xT )− f(x⋆) ≤ ∇f(x⋆)⊤(xT − x⋆) +
L

2
∥xT − x⋆∥2 = L

2
∥xT − x⋆∥2.

From this, we can derivate a rate in terms of the number of steps re-
quired (T ). Using the inequality ln(1 + x) ≤ x, it follows that after

T ≥ L

µ
ln

(
R2L

2ε

)
,

iterations, we reach absolute error at most ε.

2.9 Exercises

Exercise 12. Let c ∈ Rd. Prove that the spectral norm of c⊤ equals the Euclidean
norm of c, meaning that

max
x ̸=0

|c⊤x|
∥x∥ = ∥c∥ .
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Exercise 13. Prove Lemma 2.3! (Alternative characterization of smoothness)

Exercise 14. Prove Lemma 2.4: The quadratic function f(x) = x⊤Qx+b⊤x+c,
Q symmetric, is smooth with parameter 2 ∥Q∥.

Exercise 15. Consider the function f(x) = |x|3/2 for x ∈ R.

(i) Prove that f is strictly convex and differentiable, with a unique global min-
imum x⋆ = 0.

(ii) Prove that for every fixed stepsize γ in gradient descent (2.1) applied to f ,
there exists x0 for which f(x1) > f(x0).

(iii) Prove that f is not smooth.

(iv) Let X ⊆ R be a closed convex set such that 0 ∈ X and X ̸= {0}. Prove
that f is not smooth over X .

Exercise 16. In order to obtain average error at most ε in Theorem 2.1, we need
to choose iteration number and stepsize as

T ≥
(
RB

ε

)2

, γ :=
R

B
√
T
.

If R or B are unknown, we cannot do this.
Suppose now that we know R but not B. This means, we know a concrete

number R such that ∥x0 − x⋆∥ ≤ R; we also know that there exists a number B
such that ∥∇f(x)∥ ≤ B for all x, but we don’t know a concrete such number.

Develop an algorithm that—not knowing B—finds a vector x such that f(x)−
f(x⋆) < ε, using at most

O
((

RB

ε

)2
)

many gradient descent steps!

Exercise 17. Prove Lemma 2.6! (Operations which preserve smoothness)

Exercise 18. In order to obtain average error at most ε in Theorem 2.8, we need
to choose

γ :=
1

L
, T ≥ R2L

2ε
,
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if ∥x0 − x⋆∥ ≤ R. If L is unknown, we cannot do this.
Now suppose that we know R but not L. This means, we know a concrete

number R such that ∥x0 − x⋆∥ ≤ R; we also know that there exists a number
L such that f is smooth with parameter L, but we don’t know a concrete such
number.

Develop an algorithm that—not knowing L—finds a vector x such that f(x)−
f(x⋆) < ε, using at most

O
(
R2L

2ε

)
many gradient descent steps!

Exercise 19. Let a ∈ R. Prove that f(x) = x4 is smooth over X = (−a, a) and
determine a concrete smoothness parameter L.

Exercise 20. Prove Lemma 2.11! (Alternative characterization of strong convex-
ity)

Exercise 21. Prove Lemma 2.12! (Strongly convex functions have unique global
minimum)

Exercise 22. Prove Lemma 2.13! (Strongly convex and smooth functions)
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Projected and Proximal Gradient
Descent

Contents

3.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Bounded gradients: O(1/ε2) steps . . . . . . . . . . . . . . . . 62
3.3 Smooth convex functions: O(1/ε) steps . . . . . . . . . . . . 63
3.4 Smooth and strongly convex functions: O(log(1/ε)) steps . . 66
3.5 Projecting onto ℓ1-balls . . . . . . . . . . . . . . . . . . . . . . 68
3.6 Proximal gradient descent . . . . . . . . . . . . . . . . . . . . 72

3.6.1 The proximal gradient algorithm . . . . . . . . . . . . 73
3.6.2 Convergence in O(1/ε) steps . . . . . . . . . . . . . . 74

3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

60



3.1 The Algorithm

Another way to control gradients in (2.5) is to minimize f over a closed
convex subset X ⊆ Rd. For example, we may have a constrained opti-
mization problem to begin with (for example the LASSO in Section 1.6.2),
or we happen to know some region X containing a global minimum x⋆, so
that we can restrict our search to that region. In this case, gradient descent
also works, but we need an additional projection step. After all, it can hap-
pen that some iteration of (2.1) takes us “into the wild” (out of X) where
we have no business to do. Projected gradient descent is the following
modification. We choose x0 ∈ X arbitrary and for t ≥ 0 define

yt+1 := xt − γ∇f(xt), (3.1)
xt+1 := ΠX(yt+1) := argmin

x∈X
∥x− yt+1∥2. (3.2)

This means, after each iteration, we project the obtained iterate yt+1 back
to X . This may be very easy (think of X as the unit ball in which case
we just have to scale yt+1 down to length 1 if it is longer). But it may
also be very difficult. In general, computing ΠX(yt+1) means to solve an
auxiliary convex constrained minimization problem in each step! Here,
we are just assuming that we can do this. The projection is well-defined:
the squared distance function dy(x) := ∥x − y∥2 is strongly convex, and
hence, a unique minimum over the nonempty closed and convex set X
exists by Exercise 25.

We note that finding an initial x0 ∈ X also reduces to projection (of 0,
for example) onto X .

We will frequently need the following

Fact 3.1. Let X ⊆ Rd be closed and convex, x ∈ X,y ∈ Rd. Then

(i) (x− ΠX(y))
⊤(y − ΠX(y)) ≤ 0.

(ii) ∥x− ΠX(y)∥2 + ∥y − ΠX(y)∥2 ≤ ∥x− y∥2.

Part (i) says that the vectors x − ΠX(y) and y − ΠX(y) form an obtuse
angle, and (ii) equivalently says that the square of the long side x − y in
the triangle formed by the three points is at least the sum of squares of the
two short sides; see Figure 3.1.
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x

ΠX(y)

α ≥ 90o

α

X

Figure 3.1: Illustration of Fact 3.1

Proof. ΠX(y) is by definition a minimizer of the (differentiable) convex
function dy(x) = ∥x − y∥2 over X , and (i) is just the equivalent optimal-
ity condition of Lemma 1.27. We need X to be closed in the first place in
order to ensure that we can project onto X (see Exercise 25 applied with
dy(x)). Indeed, for example, the number 1 has no closest point in the set
[−∞, 0) ∈ R. Part (ii) follows from (i) via the (by now well-known) equa-
tion 2v⊤w = ∥v∥2 + ∥w∥2 − ∥v −w∥2.

Exercise 23 asks you to prove that if xt+1 = xt in projected gradient
descent (i.e. we project back to the previous iterate), then xt is a minimizer
of f over X .

3.2 Bounded gradients: O(1/ε2) steps

As in the unconstrained case, let us first assume that gradients are bounded
by a constant B—this time over X . This implies that f is B-Lipschitz over
X (see Theorem 1.9), but the converse may not hold.

If we minimize f over a closed and bounded (= compact) convex set X ,
we get the existence of a minimizer and a bound R for the initial distance
to it for free; assuming that f is continuously differentiable, we also have a
bound B for the gradient norms over X . This is because then x 7→ ∥∇f(x)∥
is a continuous function that attains a maximum over X . In this case, our
vanilla analysis yields a much more useful result than the one in Theo-
rem 2.1, with the same stepsize and the same number of steps.
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Theorem 3.2. Let f : dom(f) → R be convex and differentiable, X ⊆ dom(f)
closed and convex, x⋆ a minimizer of f over X ; furthermore, suppose that ∥x0 −
x⋆∥ ≤ R, and that ∥∇f(x)∥ ≤ B for all x ∈ X . Choosing the constant stepsize

γ :=
R

B
√
T
,

projected gradient descent (3.1) with x0 ∈ X yields

1

T

T−1∑
t=0

(f(xt)− f(x⋆)) ≤ RB√
T
.

Proof. The only required changes to the vanilla analysis are that in steps
(2.3) and (2.4), xt+1 needs to be replaced by yt+1 as this is the real next
(non-projected) gradient descent iterate after these steps; we therefore get

g⊤
t (xt − x⋆) =

1

2γ

(
γ2∥gt∥2 + ∥xt − x⋆∥2 − ∥yt+1 − x⋆∥2

)
. (3.3)

From Fact 3.1 (ii) (with x = x⋆,y = yt+1), we obtain ∥xt+1−x⋆∥2 ≤ ∥yt+1−
x⋆∥2, hence we get

g⊤
t (xt − x⋆) ≤ 1

2γ

(
γ2∥gt∥2 + ∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

)
(3.4)

and return to the previous vanilla analysis for the remainder of the proof.

3.3 Smooth convex functions: O(1/ε) steps

We recall from Definition 2.2 that f that is smooth over X if

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
L

2
∥x− y∥2, ∀x,y ∈ X. (3.5)

To minimize f over X , we use projected gradient descent again. The
runtime turns out to be the same as in the unconstrained case. Again, we
have sufficient decrease. This is not obvious from the following lemma,
but you are asked to prove it in Exercise 24.
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Lemma 3.3. Let f : dom(f) → R be differentiable and smooth with parameter L
over a closed and convex set X ⊆ dom(f), according to (3.5). Choosing stepsize

γ :=
1

L
,

projected gradient descent (3.1) with arbitrary x0 ∈ X satisfies

f(xt+1) ≤ f(xt)−
1

2L
∥∇f(xt)∥2 +

L

2
∥yt+1 − xt+1∥2, t ≥ 0.

More specifically, this already holds if f is smooth with parameter L over the line
segment connecting xt and xt+1.

Proof. We proceed similar to the proof of the “unconstrained” sufficient
decrease Lemma 2.7, except that we now need to deal with projected gra-
dient descent. We again start from smoothness but then use yt+1 = xt −
∇f(xt)/L, followed by the usual equation 2v⊤w = ∥v∥2+∥w∥2−∥v−w∥2:

f(xt+1) ≤ f(xt) +∇f(xt)
⊤(xt+1 − xt) +

L

2
∥xt − xt+1∥2

= f(xt)− L(yt+1 − xt)
⊤(xt+1 − xt) +

L

2
∥xt − xt+1∥2

= f(xt)−
L

2

(
∥yt+1 − xt∥2 + ∥xt+1 − xt∥2 − ∥yt+1 − xt+1∥2

)
+
L

2
∥xt − xt+1∥2

= f(xt)−
L

2
∥yt+1 − xt∥2 +

L

2
∥yt+1 − xt+1∥2

= f(xt)−
1

2L
∥∇f(xt)∥2 +

L

2
∥yt+1 − xt+1∥2.

Theorem 3.4. Let f : dom(f) → R be convex and differentiable. Let X ⊆
dom(f) be a closed convex set, and assume that there is a minimizer x⋆ of f over
X ; furthermore, suppose that f is smooth over X with parameter L according
to (3.5). Choosing stepsize

γ :=
1

L
,

projected gradient descent (3.1) with x0 ∈ X satisfies

f(xT )− f(x⋆) ≤ L

2T
∥x0 − x⋆∥2, T > 0.
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Proof. The plan is as in the proof of Theorem 2.8 to use the inequality

1

2L
∥∇f(xt)∥2 ≤ f(xt)− f(xt+1) +

L

2
∥yt+1 − xt+1∥2 (3.6)

resulting from sufficient decrease (Lemma 3.3) to bound the squared gra-
dient ∥gt∥2 = ∥∇f(xt)∥2 in the vanilla analysis. Unfortunately, (3.6) has
an extra term compared to what we got in the unconstrained case. But we
can compensate for this in the vanilla analysis itself. Let us go back to its
“constrained” version (3.3), featuring yt+1 instead of xt+1:

g⊤
t (xt − x⋆) =

1

2γ

(
γ2∥gt∥2 + ∥xt − x⋆∥2 − ∥yt+1 − x⋆∥2

)
.

Previously, we applied ∥xt+1−x⋆∥2 ≤ ∥yt+1−x⋆∥2 (Fact 3.1(ii)) to get back
on the unconstrained vanilla track. But in doing so, we dropped a term
that now becomes useful. Indeed, Fact 3.1(ii) actually yields ∥xt+1−x⋆∥2+
∥yt+1 − xt+1∥2 ≤ ∥yt+1 − x⋆∥2, so that we get the following upper bound
for g⊤

t (xt − x⋆):

1

2γ

(
γ2∥gt∥2 + ∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2 − ∥yt+1 − xt+1∥2

)
. (3.7)

Using f(xt)− f(x⋆) ≤ g⊤
t (xt −x⋆) from convexity, we have (with γ = 1/L)

that

T−1∑
t=0

(f(xt)− f(x⋆)) ≤
T−1∑
t=0

g⊤
t (xt − x⋆) (3.8)

≤ 1

2L

T−1∑
t=0

∥gt∥2 +
L

2
∥x0 − x⋆∥2 − L

2

T−1∑
t=0

∥yt+1 − xt+1∥2.

To bound the sum of the squared gradients, we use (3.6):

1

2L

T−1∑
t=0

∥gt∥2 ≤
T−1∑
t=0

(
f(xt)− f(xt+1) +

L

2
∥yt+1 − xt+1∥2

)

= f(x0)− f(xT ) +
L

2

T−1∑
t=0

∥yt+1 − xt+1∥2.
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Plugging this into (3.8), the extra terms cancel, and we arrive—as in the
unconstrained case—at

T∑
t=1

(f(xt)− f(x⋆)) ≤ L

2
∥x0 − x⋆∥2.

The statement follows as in the proof of Theorem 2.8 from the fact that due
to sufficient decrease (Exercise 24), the last iterate is the best one.

3.4 Smooth and strongly convex functions: O(log(1/ε))

steps

Assuming that f is smooth and strongly convex over a set X , we can also
prove fast convergence of projected gradient descent. This does not re-
quire any new ideas, we have seen all the ingredients before.

We recall from Definition 2.10 that f is strongly convex with parameter
µ > 0 over X if

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µ

2
∥x− y∥2, ∀x,y ∈ X. (3.9)

Theorem 3.5. Let f : dom(f) → R be convex and differentiable. Let X ⊆
dom(f) be a nonempty closed and convex set and suppose that f is smooth over
X with parameter L according to (3.5) and strongly convex over X with param-
eter µ > 0 according to (3.9). Exercise 25 asks you to prove that there is a unique
minimizer x⋆ of f over X . Choosing

γ :=
1

L
,

projected gradient descent (3.1) with arbitrary x0 satisfies the following two prop-
erties.

(i) Squared distances to x⋆ are geometrically decreasing:

∥xt+1 − x⋆∥2 ≤
(
1− µ

L

)
∥xt − x⋆∥2, t ≥ 0.

(ii) The absolute error after T iterations is exponentially small in T :

f(xT )− f(x⋆) ≤ ∥∇f(x⋆)∥
(
1− µ

L

)T/2
∥x0 − x⋆∥

+
L

2

(
1− µ

L

)T
∥x0 − x⋆∥2, T > 0.
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We note that this is almost the same result as in Theorem 2.14 for the
unconstrained case; in fact, the result in part (i) is identical, but in part (ii),
we get an additional term. This is due to the fact that in the constrained
case, we cannot argue that ∇f(x⋆) = 0. In fact, this additional term is the
dominating one, once the error becomes small. It has the effect that the
required number of steps to reach error at most ε will roughly double, in
comparison to the bound of Theorem 2.14.

Proof. In the strongly convex case, the “constrained” vanilla bound (3.7)
1

2γ

(
γ2∥∇f(xt)∥2 + ∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2 − ∥yt+1 − xt+1∥2

)
on f(xt)− f(x⋆) can be strengthened to
1

2γ

(
γ2∥∇f(xt)∥2 + ∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2 − ∥yt+1 − xt+1∥2

)
−µ

2
∥xt−x⋆∥2

(3.10)
Now we proceed as in the proof of Theorem 2.14 and rewrite the latter

bound into a bound on ∥xt+1 − x⋆∥2 that is

2γ(f(x⋆)− f(xt)) + γ2∥∇f(xt)∥2 − ∥yt+1 − xt+1∥2 + (1− µγ)∥xt − x⋆∥2,
so we have geometric decrease in squared distance to x⋆, up to some noise.
Again, we show that by sufficient decrease, the noise in this bound disap-
pears. From Lemma 3.3, we know that

f(x⋆)− f(xt) ≤ f(xt+1)− f(xt) ≤ − 1

2L
∥∇f(xt)∥2 +

L

2
∥yt+1 − xt+1∥2,

and using this, the noise can be bounded. Multiplying the previous in-
equality by 2/L, and rearranging the terms we get:

2

L
(f(x⋆)− f(xt)) +

1

L2
∥∇f(xt)∥2 − ∥yt+1 − xt+1∥2 ≤ 0.

With γ = 1/L, this exactly shows that the noise is nonpositive. This yields
(i). The bound in (ii) follows from smoothness (2.8):

f(xT )− f(x⋆) ≤ ∇f(x⋆)⊤(xT − x⋆) +
L

2
∥x⋆ − xT∥2

≤ ∥∇f(x⋆)∥ ∥xT − x⋆∥+ L

2
∥x⋆ − xT∥2 (Cauchy-Schwarz)

≤ ∥∇f(x⋆)∥
(
1− µ

L

)T/2
∥x0 − x⋆∥+ L

2

(
1− µ

L

)T
∥x0 − x⋆∥2 .
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3.5 Projecting onto ℓ1-balls

Problems that are ℓ1-regularized appear among the most commonly used
models in machine learning and signal processing, and we have already
discussed the Lasso as an important example of that class. We will now
address how to perform projected gradient as an efficient optimization for
ℓ1-constrained problems. Let

X = B1(R) :=
{
x ∈ Rd : ∥x∥1 =

d∑
i=1

|xi| ≤ R
}

be the ℓ1-ball of radius R > 0 around 0, i.e., the set of all points with 1-
norm at most R. Our goal is to compute ΠX(v) for a given vector v, i.e. the
projection of v onto X ; see Figure 3.2.

X = B1(R)
v

0 R

ΠX(v)

Figure 3.2: Projecting onto an ℓ1-ball

At first sight, this may look like a rather complicated task. Geometri-
cally, X is a cross polytope (square for d = 2, octahedron for d = 3), and as
such it has 2d many facets. But we can start with some basic simplifying
observations.

Fact 3.6. We may assume without loss of generality that (i) R = 1, (ii) vi ≥ 0 for
all i, and (iii)

∑d
i=1 vi > 1.
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Proof. If we project v/R onto B1(1), we obtain ΠX(v)/R (just scale Fig-
ure 3.2), so we can restrict to the case R = 1. For (ii), we observe that
simultaneously flipping the signs of a fixed subset of coordinates in both
v and x ∈ X yields vectors v′ and x′ ∈ X such that ∥x − v∥ = ∥x′ − v′∥;
thus, x minimizes the distance to v if and only if x′ minimizes the distance
to v′. Hence, it suffices to compute ΠX(v) for vectors with nonnegative
entries. If

∑d
i=1 vi ≤ 1, we have ΠX(v) = v and are done, so the interesting

case is (iii).

Fact 3.7. Under the assumptions of Fact 3.6, x = ΠX(v) satisfies xi ≥ 0 for all i
and

∑d
i=1 xi = 1.

Proof. If xi < 0 for some i, then (−xi − vi)
2 ≤ (xi − vi)

2 (since vi ≥ 0),
so flipping the i-th sign in x would yield another vector in X at least as
close to v as x, but such a vector cannot exist by strict convexity of the
squared distance. And if

∑d
i=1 xi < 1, then x′ = x+λ(v−x) ∈ X for some

small positive λ, with ∥x′ − v∥ = (1 − λ)∥x − v∥, again contradicting the
optimality of x.

Corollary 3.8. Under the assumptions of Fact 3.6,

ΠX(v) = argmin
x∈∆d

∥x− v∥2,

where

∆d :=
{
x ∈ Rd :

d∑
i=1

xi = 1, xi ≥ 0 ∀i
}

is the standard simplex.

This means, we have reduced the projection onto an ℓ1-ball to the pro-
jection onto the standard simplex; see Figure 3.3.

To address the latter task, we make another assumption that can be
established by suitably permuting the entries of v (which just permutes
the entries of its projection onto ∆d in the same way).

Fact 3.9. We may assume without loss of generality that v1 ≥ v2 ≥ · · · ≥ vd.

Lemma 3.10. Let x⋆ := argminx∈∆d
∥x−v∥2. Under the assumption of Fact 3.9,

there exists (a unique) p ∈ {1, . . . , d} such that

x⋆
i > 0, i ≤ p,

x⋆
i = 0, i > p.
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∆d

v

0 1

ΠX(v)

Figure 3.3: Projecting onto the standard simplex

Proof. We are using the optimality criterion of Lemma 1.27:

∇dv(x
⋆)⊤(x− x⋆) = 2(x⋆ − v)⊤(x− x⋆) ≥ 0, x ∈ ∆d, (3.11)

where dv(z) := ∥z− v∥2 is the squared distance to v.
Because

∑d
i=1 x

⋆
i = 1, there is at least one positive entry in x⋆. It remains

to show that we cannot have x⋆
i = 0 and x⋆

i+1 > 0. Indeed, in this situa-
tion, we could decrease x⋆

i+1 by some small positive ε and simultaneously
increase x⋆

i to ε to obtain a vector x ∈ ∆d such that

(x⋆ − v)⊤(x− x⋆) = (0− vi)ε− (x⋆
i+1 − vi+1)ε = ε(vi+1 − vi︸ ︷︷ ︸

≤0

− x⋆
i+1︸︷︷︸
>0

) < 0,

contradicting the optimality (3.11).

But we can say even more about x⋆.

Lemma 3.11. Under the assumption of Fact 3.9, and with p as in Lemma 3.10,

x⋆
i = vi −Θp, i ≤ p,

where

Θp =
1

p

( p∑
i=1

vi − 1
)
.
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Proof. Again, we argue by contradiction. If not all x⋆
i − vi, i ≤ p have the

same value −Θp, then we have x⋆
i −vi < x⋆

j−vj for some i, j ≤ p. As before,
we can then decrease x⋆

j > 0 by some small positive ε and simultaneously
increase x⋆

i by ε to obtain x ∈ ∆d such that

(x⋆ − v)⊤(x− x⋆) = (x⋆
i − vi)ε− (x⋆

j − vj)ε = ε((x⋆
i − vi)− (x⋆

j − vj)︸ ︷︷ ︸
<0

) < 0,

again contradicting (3.11). The expression for Θp is then obtained from

1 =

p∑
i=1

x⋆
i =

p∑
i=1

(vi −Θp) =

p∑
i=1

vi − pΘp.

Let us summarize the situation: we now have d candidates for x⋆,
namely the vectors

x⋆(p) := (v1 −Θp, . . . , vp −Θp, 0, . . . , 0), p ∈ {1, . . . , d}, (3.12)

and we just need to find the right one. In order for candidate x⋆(p) to
comply with Lemma 3.10, we must have

vp −Θp > 0, (3.13)

and this actually ensures x⋆(p)i > 0 for all i ≤ p by the assumption of
Fact 3.9 and therefore x⋆(p) ∈ ∆d. But there could still be several values of
p satisfying (3.13). Among them, we simply pick the one for which x⋆(p)
minimizes the distance to v. It is not hard to see that this can be done in
time O(d log d), by first sorting v and then carefully updating the values
Θp and ∥x⋆(p)− v∥2 as we vary p to check all candidates.

But actually, there is an even simpler criterion that saves us from com-
paring distances.

Lemma 3.12. Under the assumption of Fact 3.9, with x⋆(p) as in (3.12), and
with

p⋆ := max
{
p ∈ {1, . . . , d} : vp −

1

p

( p∑
i=1

vi − 1
)
> 0
}
,

it holds that
argmin
x∈∆d

∥x− v∥2 = x⋆(p⋆).
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The proof is Exercise 26. Together with our previous reductions, we
obtain the following result.

Theorem 3.13. Let v ∈ Rd, R ∈ R+, X = B1(R) the ℓ1-ball around 0 of
radius R. The projection

ΠX(v) = argmin
x∈X

∥x− v∥2

of v onto B1(R) can be computed in time O(d log d).

This can be improved to time O(d), based on the observation that a
given p can be compared to the value p⋆ in Lemma 3.12 in linear time,
without the need to presort v [DSSSC08].

3.6 Proximal gradient descent

Many optimization problems in applications come with additional struc-
ture. An important class of objective functions is composed as

f(x) := g(x) + h(x) (3.14)

where g is a “nice” function, where as h is a “simple” additional term,
which however doesn’t satisfy the assumptions of niceness which we used
in the convergence analysis so far. In particular, an important case is
when h is not differentiable.

The classical gradient step for unconstrained minimization of a func-
tion g can be equivalently written as

xt+1 =argmin
y∈Rd

g(xt) +∇g(xt)
⊤(y − xt) +

1

2γ
∥y − xt∥2 (3.15)

=argmin
y∈Rd

1

2γ
∥y − (xt − γ∇g(xt))∥2 . (3.16)

To obtain the last equality, we have just completed the quadratic ∥v∥2 +
2v⊤w + ∥w∥2 = ∥v + w∥2 for v := γ∇g(xt) and w := y − xt. Here it is
crucial that v is independent of the optimization variable y, so therefore
the term can be ignored when taking the argmin. The scaling by 1

2γ
is also

irrelevant but we keep it for better illustrating the next step.
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The interpretation of the above equivalent reformulation of the classic
gradient step is important for us, and is what has enabled the previous
convergence analysis in Section 2.5 for smooth unconstrained optimiza-
tion: For the particular choice of stepsize γ := 1

L
which we have used,

the above formulation shows that the gradient descent step exactly min-
imizes the local quadratic model of g at our current iterate xt, formed by
the smoothness property with parameter L as defined in (2.8).

Our goal in this section is to minimize f = g + h, instead of only the
smooth part g alone. The idea of the proximal gradient method is to mod-
ify the simple quadratic model (3.15) above, so as to make it a valid model
for f , that is a model which upper bounds f at all points. The simplest way
to do this is to just treat the h function separately by adding it unmodified.
We obtain the update equation for proximal gradient descent

xt+1 := argmin
y∈Rd

g(xt) +∇g(xt)
⊤(y − xt) +

1

2γ
∥y − xt∥2 + h(y) (3.17)

=argmin
y

1

2γ
∥y − (xt − γ∇g(xt))∥2 + h(y) . (3.18)

The last formulation makes clear that the resulting update tries to com-
bine the two goals, staying close to the classic gradient update, as well as
also to minimize h.

3.6.1 The proximal gradient algorithm

We define the proximal mapping for a given function h, and parameter γ >
0:

proxh,γ(z) := argmin
y

{ 1

2γ
∥y − z∥2 + h(y)

}
An iteration of proximal gradient descent is defined as

xt+1 := proxh,γ(xt − γ∇g(xt)) . (3.19)

This same update step can also be written in different form as

xt+1 = xt − γGγ(xt) (3.20)

for Gh,γ(x) :=
1
γ

(
x− proxh,γ(x− γ∇g(x))

)
being the so called generalized

gradient of f .
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A generalization of gradient descent. The proximal gradient descent
method (3.19) is also known as generalized gradient descent. In the special
case h ≡ 0, we of course recover classic gradient descent.

More interestingly, it is also a generalization of projected gradient de-
scent as we have discussed in the previous sections. Given a closed convex
set X , the indicator function of the set X is given as the convex function

ιX : Rd → R ∪+∞

x 7→ ιX(x) :=

{
0 if x ∈ X,

+∞ otherwise.
(3.21)

When using the indicator function of our constraint set X as h ≡ ιX , it is
easy to see that the proximal mapping simply becomes

proxh,γ(z) := argmin
y

{ 1

2γ
∥y − z∥2 + ιX(y)

}
=argmin

y∈X
∥y − z∥2 = ΠX(z) ,

which is the projection of z onto X .
As we will see, the convergence of proximal gradient will be as fast as

classic gradient descent. However, this still comes not entirely for free. In
every iteration, we now have to additionally compute the proximal map-
ping. This can be very expensive if h is complex. Nevertheless, for some
important examples of h the proximal mapping is efficient to compute,
such as for the ℓ1-norm.

3.6.2 Convergence in O(1/ε) steps

Interestingly, the vanilla convergence analysis for smooth functions as in
Theorem 2.8 directly applies for the more general case of proximal gradi-
ent descent. Intuitively, this means that proximal method only “sees” the
nice smooth part g of the objective, and is not impacted by the additional h
which it treats separately in each step.

Theorem 3.14. Let g : Rd → R be convex and smooth with parameter L, and
also h convex and proxh,γ(x) := argminz{∥x − z∥2/(2γ) + h(z)} can be com-
puted. Choosing the fixed stepsize

γ :=
1

L
,
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proximal gradient descent (3.19) with arbitrary x0 satisfies

f(xT )− f(x⋆) ≤ L

2T
∥x0 − x⋆∥2, T > 0.

Proof. The proof follows the vanilla analysis for the smooth case, applying
it only to g, while always keeping h separate, as in (3.17). We leave the
details as Exercise 27 for the reader.

3.7 Exercises

Exercise 23. Consider the projected gradient descent algorithm as in (3.1) and
(3.2), with a convex differentiable function f . Suppose that for some iteration t,
xt+1 = xt. Prove that in this case, xt is a minimizer of f over the closed and
convex set X!

Exercise 24. Prove that in Theorem 3.4 (i),

f(xt+1) ≤ f(xt).

Exercise 25. Let X ⊆ Rd be a nonempty closed and convex set, and let f be
strongly convex over X . Prove that f has a unique minimizer x⋆ over X! In
particular, for X = Rd, we obtain the existence of a unique global minimum.

Exercise 26. Prove Lemma 3.12!
Hint: It is useful to prove that with x⋆(p) as in (3.12) and satisfying (3.13),

x⋆(p) = argmin{∥x− v∥ :
d∑

i=1

xi = 1, xp+1 = · · · = xd = 0}.

Exercise 27. Prove Theorem 3.14!
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4.1 Subgradients

Definition 4.1. Let f : dom(f) → R. Then g ∈ Rd is a subgradient of f at
x ∈ dom(f) if

f(y) ≥ f(x) + g⊤(y − x) ∀y ∈ dom(f). (4.1)

The set of subgradients of f at x is called the subdifferential at x and is denoted
by ∂f(x).

The notion of a subgradient can be seen as a generalization of the gra-
dient, for functions which are not necessarily differentiable. A promi-
nent example is the ℓ1-norm, which we have discussed in Exercise 8. Fig-
ure 4.1 shows that this function has several subgradients at x = 0 (one-
dimensional case).

f(x) = |x|

0

f(y) ≥ gy

y 7→ 1
5
y

y 7→ −2
5
y

Figure 4.1: The function f(x) = |x| has subgradients g ∈ [−1, 1] at 0, since
f(y) ≥ gy for exactly g ∈ [−1, 1].

Lemma 4.2 (Exercise 28). If f : dom(f) → R is differentiable at x ∈ dom(f),
then ∂f(x) ⊆ {∇f(x)}.

This means that in the differentiable case, there is either exactly one
subgradient ∇f(x), or no subgradient at all (if f is not above its tangent
hyperplane at x; see Figure 1.1).

Definition 4.1 above looks suspiciously similar to the first-order char-
acterization of convexity (1.3) that we discussed earlier. Indeed, the only
difference is that here we have replaced ∇f(x) by g. It turns out that con-
vexity is equivalent to the existence of subgradients everywhere. So we
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get a “first order characterization” of convexity that also covers the non-
differentiable case.

Lemma 4.3 (Exercise 29). A function f : dom(f) → R is convex if and only if
dom(f) is convex and ∂f(x) ̸= ∅ for all x ∈ dom(f).

It turns out that Lipschitz continuity can be characterized by bounded
subgradients. For real-valued convex functions, this is a generalization of
Lemma 1.9 to the non-differentiable case.

Lemma 4.4 (Exercise 30). Let f : dom(f) → R be convex, dom(f) open,
B ∈ R+. Then the following two statements are equivalent.

(i) ∥g∥ ≤ B for all x ∈ dom(f) and all g ∈ ∂f(x).

(ii) |f(x)− f(y)| ≤ B∥x− y∥ for all x,y ∈ dom(f).

Subgradient optimality condition. Subgradients also allow us to de-
scribe cases of optimality for functions which are not necessarily differ-
entiable (and not necessarily convex), in the spirit of Lemma 1.21:

Lemma 4.5. Suppose that f : dom(f) → R and x ∈ dom(f). If 0 ∈ ∂f(x),
then x is a global minimum.

Proof. By (4.1), g = 0 ∈ ∂f(x) gives

f(y) ≥ f(x) + g⊤(y − x) = f(x)

for all y ∈ dom(f), so x is a global minimum.

Here we see (again) that subgradients are “stronger” than gradients for
differentiable functions. Indeed, if ∇f(x) = 0 for a differentiable function
f and x ∈ dom(f), we can only say that x is a critical point, but not nec-
essarily a global minimum. Unlike the gradient, a subgradient yields by
definition a linear lower bound to the function.
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4.2 Differentiability of convex functions

Before we move on to subgradient descent, we want to get a feeling for
how “wild” non-differentiable convex functions can be. The answer is:
they are surprisingly tame. While there are continuous functions that are
nowhere differentiable (the classical example is the Weierstrass function),
convex function cannot be as pathological. In fact, a convex function f
is differentiable almost everywhere. Formally, this means that wherever you
are in dom(f), you find points arbitrarily close to you at which f is dif-
ferentiable. In still other words, the set of points where f is not differ-
entiable has measure 0 [Roc97, Theorem 25.5]. Again, all of this requires
dom(f) ⊆ Rd, so let us remind ourselves that we are always in finite di-
mension throughout this text.

This does not mean that we can ignore non-differentiability in opti-
mization. For example, as Figure 4.1 demonstrates, the global minimum x⋆

can easily be a “kink”, a point where f is not differentiable. Also, while
running an iterative optimization scheme, we may always stumble upon
an intermediate kink.

An important fact is the following characterization of subdifferentials;

Theorem 4.6 ([Roc97, Theorem 25.6]). Let f : dom(f) → R be convex,
dom(f) open, x ∈ dom(f). Then ∂f(x) is the convex hull of the set

S(x) = { lim
n→∞

∇f(xn) | lim
n→∞

xn = x}.

In words, we consider sequences (xn)n∈N that converge to x and for
which the sequence of gradients (∇f(xn))n∈N exists and also converges;
the theorem says that the limit is a subgradient at x, and that any subgra-
dient can be obtained as a convex combination of such limit subgradients.

In the example of Figure 4.1, there are two types of sequences converg-
ing to 0 such the gradients converge as well. These are sequences that have
almost all elements negative (gradients converge to −1), and sequences
that have almost all elements positive (gradients converge to 1). Conse-
quently, the subgradients at 0 are formed by the set [−1, 1], the convex hull
of −1 and 1.

79



4.3 The algorithm

An iteration of subgradient descent is defined as

Let gt ∈ ∂f(xt)

xt+1 := xt − γtgt. (4.2)

In contrast to our previous descent algorithms, we allow a time-varying
stepsize here. This can of course be done for any descent algorithm but so
far, we just did not need it. Later in this chapter, we will make use of a
time-varying step size.

4.4 Lipschitz convex functions: O(1/ε2) steps

The following result gives the convergence for Subgradient Descent. It is
identical to Theorem 2.1, up to relaxing the requirement of differentiability.

Theorem 4.7. Let f : Rd → R be convex and B-Lipschitz continuous with a
global minimum x⋆; furthermore, suppose that ∥x0 − x⋆∥ ≤ R. Choosing the
constant stepsize

γt = γ :=
R

B
√
T
,

subgradient descent (4.2) yields

1

T

T−1∑
t=0

f(xt)− f(x⋆) ≤ RB√
T
.

Proof. The proof is identical to the one of Theorem 2.1 presented in Sec-
tion 2.4. The only change is that gt is a subgradient now and not a gra-
dient, so that the inequality (2.2) now follows from the subgradient prop-
erty (4.1) instead of the first-order characterization of convexity. The re-
quired bound ∥gt∥2 ≤ B2 follows from Lemma 4.4 (“convex and Lipschitz
= bounded subgradients”).

Projected subgradient descent. Theorem 3.2 for constrained optimiza-
tion in O(1/ε2) steps directly extends to the case of subgradient descent as
well.
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4.5 Tame strong convexity: O(1/ε) steps

(Projected) gradient descent converges in O(log(1/ε)) steps for functions
that are both smooth and strongly convex. But if a function is non-differen-
tiable, then it cannot be smooth under the natural definition of smoothness
(Exercise 31). It can still be strongly convex, however, so it is natural to ask
whether strong convexity alone allows us to obtain a convergence result.
The answer is no in general, but before we discuss this, let us define strong
convexity for not necessarily differentiable functions. This is straightfor-
ward; for differentiable functions, we recover Definition 2.10. Here, we
restrict to the unconstrained case for simplicity.

Definition 4.8. Let f : dom(f) → R be convex, µ ∈ R+, µ > 0. Function f is
called strongly convex (with parameter µ) if

f(y) ≥ f(x)+g⊤(y−x)+
µ

2
∥x−y∥2, ∀x,y ∈ dom(f), ∀g ∈ ∂f(x). (4.3)

Actually, requiring (4.3) only for some g ∈ ∂f(x) would be another
straightforward generalization of Definition 2.10, so which one is the “right”
one? The answer is that it does not matter if dom(f) is open. We could
even afford to not require anything for points x where f is not differen-
tiable. This is a consequence of Theorem 4.6 (Exercise 32).

Strong convexity has the following useful characterization.

Lemma 4.9 (Exercise 33). Let f : dom(f) → R be convex, dom(f) open,
µ ∈ R+, µ > 0. f is strongly convex with parameter µ if and only if fµ :
dom(f) → R defined by

fµ(x) = f(x)− µ

2
∥x∥2 , x ∈ dom(f)

is convex.

Let’s look at the problem with (sub)gradient descent on strongly con-
vex functions.

Lemma 4.10 (Exercise 34). The function f(x) = e|x| is strongly convex with
parameter µ = 1.

This function is of course far from being smooth; it grows exponen-
tially, so there can’t be any quadratic upper bounds. In fact, as strong

81



convexity ony requires quadratic lower bounds, strongly convex functions
can be extremely fast-growing. In such a situation, (sub)gradient descent
will overshoot already for tiny step sizes and diverge.

In case of f(x) = e|x|, the function is differentiable at x ̸= 0 with f ′(x) =
sgn(x)e|x|, so the (sub)gradient step is

xt+1 = xt − γtsgn(xt)e
|xt|.

For |x| only mildly larger than 0, the step will overshoot the optimum
x∗ = 0 and take us (much) further away. To compensate for this, we would
need extremely small stepsizes. These in turn would lead to extremely
poor convergence for functions such as f(x) = x2/2 (which is also strongly
convex with µ = 1) . Hence, there are no stepsizes that fit all strongly
convex functions with a fixed strong convexity parameter µ.

To succeed with (sub)gradient descent in this situation, we therefore
need to make some additional assumptions. Smoothness (quadratic upper
bounds) is such an assumption, but in the non-differentiable case, this is
precisely not an option. What people have done instead is to assume that
the subgradients gt that we encounter during the algorithm are bounded
in norm.

To ensure bounded subgradients, we could simply assume that f is
Lipschitz, but then we will only make a statement about an empty function
class. The reason is that a function cannot be globally strongly convex and
Lipschitz at the same time (Exercise 35). It can be strongly convex and
have bounded gradients over a closed and bounded set X , so analyzing
projected subgradient descent is an alternative.

But even when we optimize over Rd, we may be lucky and only hit
iterates with small subgradients. This will typically happen if we start
sufficiently close to optimality. In this case, there are step sizes γt (not
depending on the observed gradients) that give us useful error bounds.

Below, we prove such a bound for subgradient descent, and this re-
sult then clearly extends to gradient descent on differentiable and strongly
convex (but not necessarily smooth) functions. The bound on the number
of steps will be O(1/ε) which is of course much worse than O(log(1/ε)),
but still better than O(1/ε2) that we get in the Lipschitz case. So assum-
ing strong convexity results in a convergence behavior as in the smooth
case—if the gradients stay bounded, and this is what we mean by “tame”.

In order to analyze subgradient descent on strongly convex functions,

82



we will for the first time depart from algorithm variants with a constant
stepsize γ, but instead use a time-varying stepsize γt decreasing over time.

Theorem 4.11. Let f : Rd → R be strongly convex with parameter µ > 0 and
let x⋆ be the unique global minimum of f . With decreasing step size

γt :=
2

µ(t+ 1)
, t > 0,

subgradient descent (4.2) yields

f

(
2

T (T + 1)

T∑
t=1

t · xt

)
− f(x⋆) ≤ 2B2

µ(T + 1)
,

where B = maxTt=1 ∥gt∥.

Unlike in previous convergence results, small error is not achieved by
some iterate that we have gone through, but by a convex combination of
iterates.

Proof. We start from the vanilla analysis (2.4) (with γ = γt):

g⊤
t (xt − x⋆) =

γt
2
∥gt∥2 +

1

2γt

(
∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

)
.

Now we plug in the lower bound g⊤
t (xt−x⋆) ≥ f(xt)−f(x⋆)+ µ

2
∥xt−x⋆∥2

resulting from strong convexity to obtain (with ∥gt∥2 ≤ B2) that

f(xt)− f(x⋆) ≤ B2γt
2

+
(γ−1

t − µ)

2
∥xt − x⋆∥2 − γ−1

t

2
∥xt+1 − x⋆∥2 . (4.4)

Unlike in the vanilla analysis (where we had γt = γ, µ = 0), the right-hand
side does not telescope anymore when we sum over all t ≤ T ; to fix this,
we precisely need the time-varying stepsize.

Let’s make a small computation: to get telescoping behavior, we would
need that γ−1

t = γ−1
t+1 − µ. For example, γ−1

t = µ(1 + t) satisfies this, but
our choice γ−1

t = µ(1 + t)/2 does not. Exercise 36 asks you to compute
what happens when we actually choose γ−1

t = µ(1 + t); this will let you
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appreciate the seemingly “wrong” choice of γt = 2
µ(t+1)

here. Plugging in
this stepsize and multiplying with t on both the sides, we get

t ·
(
f(xt)−f(x⋆)

)
≤ B2t

µ(t+ 1)
+

µ

4

(
t(t− 1) ∥xt−x⋆∥2 − (t+ 1)t ∥xt+1−x⋆∥2

)
≤ B2

µ
+

µ

4

(
t(t− 1) ∥xt − x⋆∥2 − (t+ 1)t ∥xt+1 − x⋆∥2

)
.

Summing from t = 1, . . . , T , we obtain a telescoping sum:

T∑
t=1

t ·
(
f(xt)− f(x⋆)

)
≤ TB2

µ
+

µ

4

(
0− T (T + 1) ∥xT+1 − x⋆∥2

)
≤ TB2

µ
.

Since
2

T (T + 1)

T∑
t=1

t = 1,

Jensen’s inequality (Lemma 1.12) yields

f

(
2

T (T + 1)

T∑
t=1

t · xt

)
− f(x⋆) ≤ 2

T (T + 1)

T∑
t=1

t ·
(
f(xt)− f(x⋆)

)
.

This in turn implies

f

(
2

T (T + 1)

T∑
t=1

t · xt

)
− f(x⋆) ≤ 2B2

µ(T + 1)
.

Unlike all previous bounds, this bound seems to be independent from
the initial distance ∥xo − x⋆∥ to the optimum. However, there is no free
lunch here. The initial distance will typically affect the bound B (think of
a quadratic function where B is proportional to ∥xo − x⋆∥).

4.6 Optimality of first-order methods

With all the convergence rates we have seen so far, a very natural question
to ask is if these rates are best possible or not. Surprisingly, the rate can
indeed not be improved in general.
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Theorem 4.12 (Nesterov). For any T ≤ d− 1 and starting point x0, there is a
function f in the problem class of B-Lipschitz functions over Rd, such that any
(sub)gradient method has an objective error at least

f(xT )− f(x⋆) ≥ RB

2(1 +
√
T + 1)

.

The above theorem applies to all first-order methods which form iter-
ates by linearly combining past iterates and (sub)gradients, and requires
the dimension d to be sufficiently large.

4.7 Exercises

Exercise 28. Prove Lemma 4.2, meaning that a function that is differentiable at x
has at most one subgradient there, namely ∇f(x).

Exercise 29. Prove the easy direction of Lemma 4.3, meaning that the existence
of subgradients everywhere implies convexity!

Exercise 30. Prove Lemma 4.4 (Lipschitz continuity and bounded subgradients).

Exercise 31. Generalizing Definition 2.2, let us call a (not necessarily differen-
tiable) function f : Rd → R smooth with parameter L ∈ R+ if for all x ∈ Rd,
there exists a subgradient gx ∈ Rd such that

f(y) ≤ f(x) + g⊤
x (y − x) +

L

2
∥x− y∥2, ∀x,y ∈ Rd.

This means that for every point x, the graph of f is below the graph of the
quadratic function f(x) + g⊤

x (y − x) + L
2
∥x− y∥2.

Prove that if f is smooth according to this definition, then f is differentiable,
with gx = ∇f(x) for all x. In particular, for differentiable functions, the notion of
smoothness introduced above coincides with the one of Definition 2.2; moreover,
non-differentiable functions cannot be smooth.

Does the above hold if gx is not a subgradient?

Exercise 32. Suppose that f : Rd → R is convex and satisfies

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µ

2
∥x− y∥2
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for all x such that ∇f(x) exists, and for all y. Prove that this implies

f(y) ≥ f(x) + g⊤
x (y − x) +

µ

2
∥x− y∥2

for all x, all gx ∈ ∂f(x) and all y.

Exercise 33. Prove Lemma 4.9: f is strongly convex with parameter µ over an
open domain if and only if fµ : x 7→ f(x) − µ

2
∥x∥2 is convex over the same

domain.

Exercise 34. Prove Lemma 4.10: f(x) = e|x| is strongly convex with parameter
µ = 1.

Exercise 35. Prove that a function f : Rd → R cannot simultaneously be Lips-
chitz and strongly convex!

Exercise 36. Which result can you prove when you use the “telescoping stepsize”

γt =
1

µ(t+ 1)

in Theorem 4.11 instead of γt = 2
µ(t+1)

?
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5.1 The algorithm

Many objective functions occurring in machine learning are formulated as
sum structured objective functions

f(x) =
1

n

n∑
i=1

fi(x). (5.1)

Here fi is typically the cost function of the i-th datapoint, taken from a
training set of n elements in total.

We have already seen an example for this: the loss function (1.13) in
the handwritten digit recognition (Section 1.6.1) has one term for each of
the n training images x ∈ P :

ℓ(W ) = −
∑
x∈P

ln zd(x)(Wx).

The normalizing factor 1/n that we assume in the general setting (5.1)
will just simplify the following a bit.

An iteration of stochastic gradient descent (SGD) in its basic form is de-
fined as

sample i ∈ [n] uniformly at random
xt+1 := xt − γt∇fi(xt). (5.2)

This update looks almost identical to the classical gradient method, the
only difference being that we have computed the gradient not of the en-
tire f but only of one particular (randomly chosen) function fi. As we will
need varying stepsizes a bit later, we allow for the stepsize to depend on t
now.

In the above setting, the update vector gt := ∇fi(xt) is called a stochastic
gradient. Formally, gt is a vector of d random variables, but we will also
simply call this a random variable.

The crucial advantage of SGD versus its classical gradient descent coun-
terpart is the efficiency per iteration: While computing the full gradient for
a sum structured problem (5.1) would require us to compute n individual
gradients of the fi functions, an iteration of SGD requires only a single
one of those, and therefore is n times cheaper. SGD has therefore become
the main workhorse for training machine learning models. Whether such
cheaper iterations also give similar progress is another question, which we
analyze next.
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5.2 Unbiasedness

We would like to start with the vanilla analysis again, but now we can-
not bound the random variable g⊤

t (xt − x⋆) from below using (2.2), as the
inequality

f(xt)− f(x⋆) ≤ g⊤
t (xt − x⋆)

may hold or not hold, depending on how gt turns out. But it still holds in
expectation, as we show now.

The vector gt may be far from the true gradient, and of high variance,
but in expectation over the random choice of i, it does coincide with the
full gradient of f . We formalize this as

E
[
gt

∣∣xt = x
]
=

1

n

n∑
i=1

∇fi(x) = ∇f(x), x ∈ Rd. (5.3)

Here, E
[
gt

∣∣xt = x
]

is the conditional expectation of gt, given the event
{xt = x}. If this event is nonempty, linearity of conditional expectations
yields that

E
[
g⊤
t (x− x⋆)

∣∣xt = x
]
= E

[
gt

∣∣xt = x
]⊤

(x− x⋆) = ∇f(x)⊤(x− x⋆).

Using the fact that {xt = x} can occur only for x in some finite set X (one
element for every choice of indices throughout all iterations), the partition
theorem further gives us

E
[
g⊤
t (xt − x⋆)

]
=

∑
x∈X

E
[
g⊤
t (x− x⋆)

∣∣xt = x
]
prob(xt = x)

=
∑
x∈X

∇f(x)⊤(x− x⋆) prob(xt = x)

= E
[
∇f(xt)

⊤(xt − x⋆)
]
.

Hence, we have

E
[
g⊤
t (xt − x⋆)

]
= E

[
∇f(xt)

⊤(xt − x⋆)
]
≥ E

[
f(xt)− f(x⋆)

]
. (5.4)

The last inequality is by convexity, and this is means that the lower bound
(2.2) holds in expectation.

Exercise 37 lets you recall some basics around conditional expectations.
Under (5.3) we say that the stochastic gradient gt is an unbiased estimator
of the gradient, for any time-step t.
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5.3 Bounded stochastic gradients: O(1/ε2) steps

To get a first result out of the vanilla analysis, we assumed in Section 2.4
that ∥∇f(x)∥2 ≤ B2 for all x ∈ Rd, where B was a constant. Here, we
are assuming the same for the expected squared norms of our stochastic
gradients. And we are getting the same result, except that it now holds for
the expected function values.

Theorem 5.1. Let f : Rd → R be a convex and differentiable function, and let
x⋆ be a global minimum of f ; furthermore, suppose that ∥x0 −x⋆∥ ≤ R, and that
E
[
∥gt∥2

]
≤ B2 for all t. Choosing the constant stepsize

γ :=
R

B
√
T

stochastic gradient descent (5.2) yields

1

T

T−1∑
t=0

E
[
f(xt)

]
− f(x⋆) ≤ RB√

T
.

Proof. Taking expectations on both sides of the vanilla analyis (2.5) and
using linearity of expectations, we get

T−1∑
t=0

E
[
g⊤
t (xt − x⋆)

]
≤ γ

2

T−1∑
t=0

E
[
∥gt∥2

]
+

1

2γ
∥x0 − x⋆∥2. (5.5)

By (5.4),
E
[
f(xt)− f(x⋆)

]
≤ E

[
g⊤
t (xt − x⋆)

]
.

Plugging this into (5.5), using E
[
∥gt∥2

]
≤ B2 and ∥x0 − x⋆∥ ≤ R, we get

T−1∑
t=0

E
[
f(xt)− f(x⋆)

]
≤ γ

2
B2T +

1

2γ
R2,

from which the statement follows from the choice of γ as in Theorem 2.1.

Constrained optimization. For constrained optimization, Theorem 5.1
for the convergence in O(1/ε2) steps directly extends to constrained prob-
lems as well. After every step of SGD, projection back to X is applied as
usual. The resulting algorithm is called projected SGD.
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5.4 Tame strong convexity: O(1/ε) steps

It is possible to strengthen our above SGD analysis. One way to do so
is under the additional assumption of strong convexity of the objective
function f (as in Definition 2.10). Again, the proof works by “taking ex-
pectations” over a previous analysis, in this case the one for subgradient
descent in the tame strongly convex case (Theorem 4.11).

Theorem 5.2. Let f : Rd → R be differentiable and strongly convex with pa-
rameter µ > 0; let x⋆ be the unique global minimum of f . With decreasing step
size

γt :=
2

µ(t+ 1)

stochastic gradient descent (5.2) yields

E
[
f

(
2

T (T + 1)

T∑
t=1

t · xt

)
− f(x⋆)

]
≤ 2B2

µ(T + 1)
,

where B = maxTt=1E
[
∥gt∥

]
.

Proof. We start from the vanilla analysis (2.4) (with γ = γt) and take expec-
tations on both sides:

E
[
g⊤
t (xt − x⋆)

]
=

γt
2
E
[
∥gt∥2

]
+

1

2γt

(
E
[
∥xt − x⋆∥2

]
− E

[
∥xt+1 − x⋆∥2

])
.

Now we use (5.4) along with strong convexity to get a lower bound

E
[
g⊤
t (xt − x⋆)

]
= E

[
∇f(xt)

⊤(xt − x⋆)
]

≥ E
[
f(xt)− f(x⋆)

]
+

µ

2
E
[
∥xt − x⋆∥2

]
for the left-hand side. Combining the previous two equations and using
E
[
∥gt∥2

]
≤ B2, we get the “expected version” of (4.4):

E[f(xt)− f(x⋆)] ≤ B2γt
2

+
(γ−1

t − µ)

2
E
[
∥xt − x⋆∥2

]
− γ−1

t

2
E
[
∥xt+1 − x⋆∥2

]
.

The proof continues as in Theorem 4.11, with every step being the “ex-
pected version” of the corresponding step in the earlier proof.
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5.5 Stochastic Subgradient Descent

For problems which are not necessarily differentiable, we modify SGD to
use a subgradient of fi in each iteration. The update of stochastic subgra-
dient descent is given by

sample i ∈ [n] uniformly at random
let gt ∈ ∂fi(xt) (5.6)
xt+1 := xt − γtgt.

Let gi : Rd → Rd denote the function that selects the subgradient of fi
at the current point. Then we have gt = gi(xt) for random i. Unbiasedness
now becomes

E
[
gt

∣∣xt = x
]
=

1

n

n∑
i=1

gi(x) =: g(x), x ∈ Rd.

It is immediate from the subgradient property that g(x) ∈ ∂f(x) if gi(x) ∈
∂fi(x) for all i. As in Section 5.2 for SGD, we then get

E
[
g⊤
t (xt − x⋆)

]
= E

[
g(xt)

⊤(xt − x⋆)
]
.

This in turn can be lower bounded by

E
[
f(xt)− f(x⋆)

]
+

µ

2
E
[
∥xt − x⋆∥2

]
,

with µ = 0 in the convex case and µ > 0 in the strongly convex case,
now using g(xt)’s subgradient property (4.1) in the convex and (4.3) in the
strongly convex case instead of the first-order condition for ∇f(xt). As
this lower bound is the crucial ingredient in the previous two analyses of
convergence in O(1/ε2) and O(1/ε) steps, the results directly extend to the
case of subgradient descent as well.

5.6 Mini-batch variants

Instead of using a single element fi of our sum objective (5.1) to form a
stochastic gradient gt = ∇fi(xt), another variant is to use an average of
several of them:

g̃t :=
1

m

m∑
j=1

gj
t . (5.7)
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where gj
t = ∇fij(xt) for an index ij . The set of the (distinct) ij indices is

called a mini-batch, and m is the mini batch size.
Using the step direction g̃t defines mini-batch SGD. For m = 1, we re-

cover SGD as originally defined, while for m = n we recover full gradient
descent.

Mini-batch SGD can be advantageous in several applications. For ex-
ample, parallelization over up to m processors will easily give a speed-up
for the gradient computation, which is typically the main cost of running
SGD. Here, parallelization exploits the fact that all gj

t are defined at the
same iterate xt and can therefore be computed independently.

Taking an average of many independent random variables reduces the
variance. In the context of mini-batch SGD, we obtain that for larger size
of the mini-batch m our estimate g̃t will be closer to the true gradient, in
expectation:

E
[∥∥∥g̃t −∇f(xt)

∥∥∥2] =E[∥∥∥ 1

m

m∑
j=1

gj
t −∇f(xt)

∥∥∥2]
=

1

m
E
[
∥g1

t −∇f(xt)∥2
]

=
1

m
E
[
∥g1

t ∥2
]
− 1

m
∥∇f(xt)∥2 ≤

B2

m
.

Using a modification of the above analysis, it is possible to use this
property to relate the above convergence rate of SGD to the rate of full
gradient descent.

5.7 Exercises

Exercise 37. Let Y be a random variable over a finite probability space (Ω, prob)
where prob : 2Ω → [0, 1]; this avoids subtleties in defining conditional probabili-
ties and expectations; and it covers the random variables occurring in SGD, since
in each step, we are randomly choosing among a finite set of n indices. Further-
more, let B ⊆ Ω be an event.

For nonemepty B, the conditional expectation of Y given B is the number

E
[
Y
∣∣B] := ∑

y∈Y (Ω)

y · prob
(
Y = y

∣∣B).
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where Y = y is shorthand for the event {ω ∈ Ω : Y (ω) = y}.
Finally, for two events A and B ̸= ∅, the conditional probability prob

[
A
∣∣B]

is defined as

prob
(
A
∣∣B) := prob

(
A ∩B

)
prob

(
B
) .

If B = ∅, E
[
Y
∣∣B] can be defined arbitrarily.

Prove the following statements.

(i) Alternative definition of conditional expectation:

prob
(
B
)
· E
[
Y
∣∣B] =∑

ω∈B

Y (ω)prob(ω).

(ii) Partition Theorem: Let B1, . . . , Bm be a partition of Ω. Then

E
[
Y
]
=

m∑
i=1

E
[
Y
∣∣Bi

]
prob

(
Bi

)
.

(iii) Linearity of conditional expectation: For random variables Y1, . . . , Ym over
(Ω, prob) and real numbers λ1, . . . , λm, and if B ̸= ∅,

m∑
i=1

λiE
[
Yi

∣∣B] = E[ m∑
i=1

λiYi

∣∣B].
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So far, all convergence results that we have given for variants of gra-
dient descent have been for convex functions. And there is a good reason
for this: on nonconvex functions, gradient descent can in general not be
expected to come close (in distance or function value) to the global mini-
mum x⋆, even if there is one.

As an example, consider the nonconvex function from Figure 1.4 (left).
Figure 6.1 shows what happens if we start gradient descent somewhere “to
the right”, with a not too large stepsize so that we do not overshoot. For
any sufficiently large T , the iterate xT will be close to the local minimum
y⋆, but not to the global minimum x⋆.

x∗ y∗ x0

Figure 6.1: Gradient descent may get stuck in a local minimum y⋆ ̸= x⋆

Even if the global minimum is the unique local minimum, gradient
descent is not guaranteed to get there, as it may also get stuck in a saddle
point, or even fail to reach anything at all; see Figure 6.2.

In practice, variants of gradient descent are often observed to perform
well even on nonconvex functions, but theoretical explanations for this are
mostly missing.

In this chapter, we show that under favorable conditions, we can still
say something useful about the behavior of gradient descent, even on non-
convex functions.
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x0 y∗ x∗ x∗ x0

Figure 6.2: Gradient descent may get stuck in a flat region (saddle point)
y⋆ (left), or reach neither a local minimum nor a saddle point (right).

6.1 Smooth functions

A particularly low hanging fruit is the analysis of gradient descent on
smooth (but not necessarily convex) functions. We recall from Defini-
tion 2.2) that a differentiable function f : dom(f) → R is smooth with
parameter L ∈ R+ over a convex set X ⊆ dom(f) if

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
L

2
∥x− y∥2, ∀x,y ∈ X.

This means that at every point x ∈ X , the graph of f is below a not-too-
steep tangential paraboloid, and this may happen even if the function is
not convex; see Figure 6.3.

There is a class of arbitrarily smooth nonconvex functions, namely the
differentiable concave functions. A function f is called concave if −f is
convex. Hence, for all x, the graph of a differentiable concave function
is below the tangent hyperplane at x, hence f is smooth with parameter
L = 0; see Figure 6.4.

However, from our optimization point of view, concave functions are
boring, since they have no global minimum (at least in the unconstrained
setting that we are treating here). Gradient descent will then simply “run
off to infinity”.

We will therefore consider smooth functions that have a global min-
imum x⋆. Are there even such functions that are not convex? Actually,
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x y

f(y)

f(x) +∇f(x)>(y − x) + L
2
‖x− y‖2

Figure 6.3: A smooth and nonconvex function

many. As we show next, any twice differentiable function with bounded
Hessians over some convex set X is smooth over X . A concrete example of
a smooth function that is not convex but has a global minimum (actually,
many), is f(x) = sin(x).

Lemma 6.1. Let f : dom(f) → R be twice differentiable, with X ⊆ dom(f) a
convex set, and ∥∇2f(x)∥ ≤ L for all x ∈ X , where ∥·∥ is again spectral norm.
Then f is smooth with parameter L over X .

Proof. By Theorem 1.9 (applied to the gradient function ∇f ), bounded
Hessians imply Lipschitz continuity of the gradient,

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ , x,y ∈ X. (6.1)

We show that this in turn implies smoothness. This is in fact the easy
direction of Lemma 2.5 (in the twice differentiable case).

For any fixed x,y ∈ X , we use the (by now) very familar function
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x y

f(y)

f(x) +∇f(x)>(y − x)

Figure 6.4: A concave function and the first-order characterization of con-
cavity: f(y) ≤ f(x) +∇f(x)⊤(y − x), ∀x,y ∈ Rd

h : dom(h) → Rd over a suitable open domain I ⊃ [0, 1], given by

h(t) = f
(
x+ t(y − x)

)
, t ∈ I,

for which we have shown in (1.1) that

h′(t) = ∇f
(
x+ t(y − x)

)⊤
(y − x), t ∈ I.

As f is twice differentiable, ∇f and hence also h′ are actually continuous,
so we can apply the fundamental theorem of calculus (in the second line
of the lengthy but easy derivation below). We compute

f(y)− f(x)−∇f(x)⊤(y − x)

= h(1)− h(0)−∇f(x)⊤(y − x)

=

∫ 1

0

h′(t)dt−∇f(x)⊤(y − x)

=

∫ 1

0

∇f(x+ t(y − x))⊤(y − x)dt−∇f(x)⊤(y − x)

=

∫ 1

0

(
∇f(x+ t(y − x))⊤(y − x)−∇f(x)⊤(y − x)

)
dt

=

∫ 1

0

(
∇f(x+ t(y − x))−∇f(x)

)⊤
(y − x)dt.
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So far, we had only equalities, now we start estimating:

f(y)− f(x)−∇f(x)⊤(y − x)

=

∫ 1

0

(
∇f(x+ t(y − x))−∇f(x)

)⊤
(y − x)dt

≤
∫ 1

0

∣∣(∇f(x+ t(y − x))−∇f(x)
)⊤

(y − x)
∣∣dt

≤
∫ 1

0

∥∥(∇f(x+ t(y − x))−∇f(x)
)∥∥ ∥(y − x)∥ dt (Cauchy-Schwarz)

≤
∫ 1

0

L ∥t(y − x)∥ ∥(y − x)∥ dt (Lipschitz continuous gradients)

=

∫ 1

0

Lt ∥x− y∥2 dt

=
L

2
∥x− y∥2 .

This is smoothness over X according to Definition 2.2.

For twice differentiable functions, the converse is also (almost) true.
If f is smooth over an open convex subset X ⊆ dom(f), the maximum
eigenvalue of the Hessian is bounded over X (Exercise 38 ). We can only
bound the eigenvalues from above since e.g. concave functions are smooth
with parameter L = 0 but generally have unbounded Hessians. It is also
not hard to understand why openness is necessary in general. Indeed, for
a point x on the boundary of X , the smoothness condition does not give
us any information about nearby points not in X . As a consequence, even
at points with large Hessians, f might look smooth inside X . As a simple
example, consider f(x1, x2) = x2

1 +Mx2
2 with M ∈ R+ large. The function

f is smooth with L = 2 over X = {(x1, x2) : x2 = 0}: indeed, over this set,
f looks just like the supermodel. But for all x, we have ∥∇2f(x)∥ = 2M .

Now we get back to gradient descent on smooth functions with a global
minimum. The punchline is so unspectacular that there is no harm in
spoiling it already now: What we can prove is that ∥∇f(xt)∥2 converges to
0 at the same rate as f(xt)− f(x⋆) converges to 0 in the convex case. Nat-
urally, f(xt)− f(x⋆) itself is not guaranteed to converge in the nonconvex
case, for example if xt converges to a local minimum that is not global, as
in Figure 6.1.
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It is tempting to interpret convergence of ∥∇f(xt)∥2 to 0 as convergence
to a critical point of f (a point where the gradient vanishes). But this inter-
pretation is not fully accurate in general, as Figure 6.2 (right) shows: The
algorithm may enter a region where f asymptotically approaches some
value, without reaching it (think of the rightmost piece of the function in
the figure as f(x) = e−x). In this case, the gradient converges to 0, but the
iterates are nowhere near a critical point.

Theorem 6.2. Let f : Rd → R be differentiable with a global minimum x⋆; fur-
thermore, suppose that f is smooth with parameter L according to Definition 2.2.
Choosing stepsize

γ :=
1

L
,

gradient descent (2.1) yields

1

T

T−1∑
t=0

∥∇f(xt)∥2 ≤
2L

T

(
f(x0)− f(x⋆)

)
, T > 0.

In particular, ∥∇f(xt)∥2 ≤ 2L
T

(
f(x0)−f(x⋆)

)
for some t ∈ {0, . . . , T −1}. And

also, limt→∞ ∥∇f(xt)∥2 = 0 (Exercise 39).

Proof. We recall that sufficient decrease (Lemma 2.7) does not require con-
vexity, and this gives

f(xt+1) ≤ f(xt)−
1

2L
∥∇f(xt)∥2, t ≥ 0.

Rewriting this into a bound on the gradient yields

∥∇f(xt)∥2 ≤ 2L
(
f(xt)− f(xt+1)

)
.

Hence, we get a telescoping sum

T−1∑
t=0

∥∇f(xt)∥2 ≤ 2L
(
f(x0)− f(xT )

)
≤ 2L

(
f(x0)− f(x⋆)

)
.

The statement follows.
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In the smooth setting, gradient descent has another interesting prop-
erty: with stepsize 1/L, it cannot overshoot. By this, we mean that it
cannot pass a critical point (in particular, not the global minimum) when
moving from xt to xt+1. Equivalently, with a smaller stepsize, no critical
point can be reached. With stepsize 1/L, it is possible to reach a critical
point, as we have demonstrated for the supermodel function f(x) = x2 in
Section 2.7.

Lemma 6.3 (Exercise 40). Let f : Rd → R be differentiable; let x ∈ Rd such
that ∇f(x) ̸= 0, i.e. x is not a critical point. Suppose that f is smooth with
parameter L over the line segment connecting x and x′ = x − γ∇f(x), where
γ = 1/L′ < 1/L. Then x′ is also not a critical point.

Figure 6.5 illustrates the situation.

x x xx′ x′ x′ = y?y? y?

Figure 6.5: Gradient descent on smooth functions: When moving from x
to x′ = x − γ∇f(x) with γ < 1/L, x′ will not be a critical point (left);
equivalently, with γ = 1/L, we cannot overshoot, i.e. pass a critical point
(middle); with γ = 1/L, we may exactly reach a critical point (right).

6.2 Trajectory analysis

Even if the “landscape” (graph) of a nonconvex function has local minima,
saddle points, and flat parts, it is sometimes possible to prove that gradient
descent avoids these bad spots and still converges to a global minimum.
For this, one needs a good starting point and some theoretical understand-
ing of what happens when we start there—this is trajectory analysis.

In 2018, results along these lines have appeared that prove convergence
of gradient descent to a global minimum in training deep linear linear net-
works, under suitable conditions. In this section, we will study a vastly

102



simplified setting that allows us to show the main ideas (and limitations)
behind one particular trajectory analysis [ACGH18].

In our simplified setting, we will look at the task of minimizing a con-
crete and very simple nonconvex function. This function turns out be
smooth along the trajectories that we analyze, and this is one important
ingredient. However, smoothness alone does not suffice to prove con-
vergence to the global minimum, let alone fast convergence: As we have
seen in the last section, we can in general only guarantee that the gradient
norms converge to 0, and at a rather slow rate. To get beyond this, we will
need to exploit additional properties of the function under consideration.

6.2.1 Deep linear neural networks

Let us go back to the problem of learning linear models as discussed in
Section 1.6.2, using the example of Master’s admission. We had n inputs
x1, . . . ,xn, where each input xi ∈ Rd consisted of d input variables; and
we had n outputs y1, . . . , yn ∈ R. Then we made the hypothesis that (after
centering), output values depend (approximately) linearly on the input,

yi ≈ w⊤xi,

for a weight vector w = (w1, . . . , wd) ∈ Rd to be learned.
Now we consider the more general case where there is not just one

output yi ∈ R as response to the i-th input, but m outputs yi ∈ Rm. In this
case, the linear hypothesis becomes

yi ≈ Wxi,

for a weight matrix W ∈ Rm×d to be learned. The matrix that best fits this
hypothesis on the given observations is the least-squares matrix

W ⋆ = argmin
W∈Rm×d

n∑
i=1

∥Wxi − yi∥2 .

If we let X ∈ Rd×n be the matrix whose columns are the xi and Y ∈ Rm×n

the matrix whose columns are the yi, we can equivalently write this as

W ⋆ = argmin
W∈Rm×d

∥WX − Y ∥2F , (6.2)
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where ∥A∥F =
√∑

i,j a
2
ij is the Frobenius norm of a matrix A.

Finding W ∗ (the global minimum of a convex quadratic function) is a
simple task that boils down to solving a system of linear equations; see
also Section 1.4.2. A fancy way of saying this is that we are training a
linear neural network with one layer, see Figure 6.6 (left).

x1

x2

x3

x4

x5

y1

y2

W

x1

x2

x3

x4

x5

y1

y2

h11

h12

h13

h14

h21

h22

h23

h24

h25

h26

W1 W2 W3

Figure 6.6: Left: A linear neural network over d input variables x =
(x1, . . . , xd) and m output variables y = (y1, . . . , ym). The edge connecting
input variable xj with output variable yi has a weight wij (to be learned),
and all weights together form a weight matrix W ∈ Rm×d. Given the
weights, the network computes the linear transformation y = Wx be-
tween inputs and outputs. Right: a deep linear neural network of depth
3 with weight matrices W1,W2,W3. Given the weights, the network com-
putes the linear transformation y = W3W2W1x.

But what if we have ℓ layers (Figure 6.6 (right)? Training such a net-
work corresponds to minimizing

∥WℓWℓ−1 · · ·W1X − Y ∥2F ,
over ℓ weight matrices W1, . . . ,Wℓ to be learned. In case of linear neural
networks, there is no benefit in adding layers, as any linear transforma-
tion x 7→ WℓWℓ−1 · · ·W1X can of course be represented as x 7→ WX with
W := Wℓ−1 · · ·W1. But from a theoretical point of view, a deep linear neu-
ral network gives us a simple playground in which we can try to under-
stand why training deep neural networks with gradient descent works,
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despite the fact that the objective function is no longer convex. The hope
is that such an understanding can ultimately lead to an analyis of gradient
descent (or other suitable methods) for “real” (meaning non-linear) deep
neural networks.

In the next section, we will discuss the case where all matrices are 1×1,
so they are just numbers. This is arguably a toy example in our already
simple playground. Still, it gives rise to a nontrivial nonconvex function,
and the analysis of gradient descent on it will require similar ingredients
as the one on general deep linear neural networks [ACGH18].

6.2.2 A simple nonconvex function

The function (that we consider fixed throughout the section) is f : Rd → R

defined by

f(x) :=
1

2

(
d∏

k=1

xk − 1

)2

, (6.3)

As d is fixed, we will abbreviate
∏d

k=1 xk by
∏

k xk throughout. Minimizing
this function corresponds to training a deep linear neural network with d
layers, one neuron per layer, with just one training input x = 1 and a
corresponding output y = 1. Figure 6.7 visualizes the function f for d = 2.

First of all, the function f does have global minima, as it is nonnegative,
and value 0 can be achieved (in many ways). Hence, we immediately
know how to minimize this (for example, set xk = 1 for all k). The question
is whether gradient descent also knows, and if so, how we prove this.

Let us start by computing the gradient. We have

∇f(x) =

(∏
k

xk − 1

)(∏
k ̸=1

xk , . . . ,
∏
k ̸=d

xk

)⊤

. (6.4)

What are the critical points, the ones where ∇f(x) vanishes? This hap-
pens when

∏
k xk = 1 in which case we have a global minimum (level 0

in Figure 6.7). But there are other critical points. Whenever at least two
of the xk are zero, the gradient also vanishes, and the value of f is 1/2 at
such a point (point 0 in Figure 6.7). This already shows that the function
cannot be convex, as for convex functions, every critical point is a global
minimum (Lemma 1.21). It is easy to see that every non-optimal critical
point must have two or more zeros.
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Figure 6.7: Levels sets of f(x1, x2) =
1
2
(x1x2 − 1)2

In fact, all critical points except the global minima are saddle points.
This is because at any such point x, we can slightly perturb the (two or
more) zero entries in such a way that the product of all entries becomes
either positive or negative, so that the function value either decreases or
increases.

Figure 6.8 visualizes (scaled) negative gradients of f for d = 2; these are
the directions in which gradient descent would move from the tails of the
respective arrows. The figure already indicates that it is difficult to avoid
convergence to a global minimum, but it is possible (see Exercise 42).

We now want to show that for any dimension d, and from anywhere in
X = {x : x > 0,

∏
k xk ≤ 1}, gradient descent will converge to a global

minimum. Unfortunately, our function f is not smooth over X . For the
analysis, we will therefore show that f is smooth along the trajectory of
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Figure 6.8: Scaled negative gradients of f(x1, x2) =
1
2
(x1x2 − 1)2

gradient descent for suitable L, so that we get sufficient decrease

f(xt+1) ≤ f(xt)−
1

2L
∥∇f(xt)∥2, t ≥ 0

by Lemma 2.7.
This already shows that gradient descent cannot converge to a saddle

point: all these have (at least two) zero entries and therefore function value
1/2. But for starting point x0 ∈ X , we have f(x0) < 1/2, so we can never
reach a saddle while decreasing f .

But doesn’t this mean that we necessarily have to converge to a global
minimum? No, because the sublevel sets of f are unbounded, so it could in
principle happen that gradient descent runs off to infinity while constantly
improving f(xt) (an example is gradient descent on f(x) = e−x). Or some
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other bad behavior occurs (we haven’t characterized what can go wrong).
So there is still something to prove.

How about convergence from other starting points? For x > 0,
∏

k xk ≥
1, we also get convergence (Exercise 41). But there are also starting points
from which gradient descent will not converge to a global minimum (Ex-
ercise 42).

The following simple lemma is the key to showing that gradient de-
scent behaves nicely in our case.

Definition 6.4. Let x > 0 (componentwise) , and let c ≥ 1 be a real number. x
is called c-balanced if xi ≤ cxj for all 1 ≤ i, j ≤ d.

In fact, any initial iterate x0 > 0 is c-balanced for some (possibly large) c.

Lemma 6.5. Let x > 0 be c-balanced with
∏

k xk ≤ 1. Then for any stepsize
γ > 0, x′ := x−γ∇f(x) satisfies x′ ≥ x (componentwise) and is also c-balanced.

If c = 1 (all entries of x are equal), this is easy to see since then also
all entries of ∇f(x) in (6.4) are equal. Later we will show that for suitable
step size, we also maintain that

∏
k x

′
k ≤ 1, so that gradient descent only

goes through balanced iterates.

Proof. Set ∆ := −γ(
∏

k xk − 1)(
∏

k xk) ≥ 0. Then the gradient descent
update assumes the form

x′
k = xk +

∆

xk

≥ xk, k = 1, . . . , d.

For i, j, we have xi ≤ cxj and xj ≤ cxi (⇔ 1/xi ≤ c/xj). We therefore get

x′
i = xi +

∆

xi

≤ cxj +
∆c

xj

= cx′
j.

6.2.3 Smoothness along the trajectory

It will turn out that our function f—despite not being globally smooth—
is smooth over the trajectory of gradient descent, assuming that we start
with x0 > 0,

∏
k(x0)k < 1. We will derive this from bounded Hessians.

Let us therefore start by computing the Hessian matrix ∇2f(x), where by

108



definition, ∇2f(x)ij is the j-th partial derivative of the i-th entry of ∇f(x).
This i-th entry is

(∇f)i =

(∏
k

xk − 1

)∏
k ̸=i

xk

and its j-th partial derivative is therefore

∇2f(x)ij =


(∏

k ̸=i

xi

)2

, j = i

2
∏
k ̸=i

xk

∏
k ̸=j

xk −
∏
k ̸=i,j

xk, j ̸= i

This looks promising: if
∏

k xk ≤ 1, then we would also expect that the
products

∏
k ̸=i xk and

∏
k ̸=i,j xk are small, in which case all entries of the

Hessian are small, giving us a bound on ∥∇f 2x∥ that we need to establish
smoothness of f . However, for general x, this fails. If x contains entries
close to 0, it may happen that some terms

∏
k ̸=i xk and

∏
k ̸=i,j xk are actually

very large.
What comes to our rescue is again c-balancedness.

Lemma 6.6. Suppose that x > 0 is c-balanced (Definition 6.4). Then for any
I ⊆ {1, . . . , d}, we have(

1

c

)|I|
(∏

k

xk

)1−|I|/d

≤
∏
k/∈I

xk ≤ c|I|

(∏
k

xk

)1−|I|/d

.

Proof. For any i, we have xd
i ≥ (1/c)d

∏
k xk by balancedness, hence xi ≥

(1/c)(
∏

k xk)
1/d. It follows that

∏
k/∈I

xk =

∏
k xk∏
i∈I xi

≤
∏

k xk

(1/c)|I|(
∏

k xk)|I|/d
= c|I|

(∏
k

xk

)1−|I|/d

.

The lower bound follows in the same way from xd
i ≤ cd

∏
k xk.

This lets us bound the Hessians of c-balanced points.

Lemma 6.7. Let x > 0 be c-balanced with
∏

k xk ≤ 1. Then∥∥∇2f(x)
∥∥ ≤

∥∥∇2f(x)
∥∥
F
≤ 3dc2.

where ∥·∥F is the Frobenius norm and ∥·∥ the spectral norm.
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Proof. The fact that ∥A∥ ≤ ∥A∥F is Exercise 43. To bound the Frobenius
norm, we use the previous lemma to compute

∣∣∇2f(x)ii
∣∣ =

∣∣∣∣∣∣
(∏

k ̸=i

xi

)2
∣∣∣∣∣∣ ≤ c2

and for i ̸= j,

∣∣∇2f(x)ij
∣∣ ≤ ∣∣∣∣∣2∏

k ̸=i

xk

∏
k ̸=j

xk

∣∣∣∣∣+
∣∣∣∣∣∏
k ̸=i,j

xk

∣∣∣∣∣ ≤ 3c2.

Hence, ∥∇2f(x)∥2F ≤ 9d2c4. Taking square roots, the statement follows.

This now implies smoothness of f along the whole trajectory of gradi-
ent descent, under the usual “smooth stepsize” γ = 1/L = 1/3dc2.

Lemma 6.8. Let x > 0 be c-balanced with
∏

k xk < 1, L = 3dc2. Let γ := 1/L.
We already know from Lemma 6.5 that

x′ := x− γ∇f(x) ≥ x

is c-balanced. Furthermore, (and this is the statement of the lemma), f is smooth
with parameter L over the line segment connecting x and x′. Lemma 6.3 (no
overshooting) also yields

∏
k x

′
k ≤ 1.

Proof. Image traveling from x to x′ along the line segment. As long as the
product of all variables remains bounded by 1, Hessians remain bounded
by Lemma 6.7, and f is smooth over the part of the segment traveled so
far, by Lemma 6.1. So f can only fail to be smooth over the whole segment
when there is y ̸= x′ on the segment such that

∏
k yk = 1. Consider the

first such y. Note that f is still smooth with parameter L over the segment
connecting x and y. Also, ∇f(x) ̸= 0 (due to x > 0,

∏
k xk < 1), so x is

not a critical point, and y results from x by a gradient descent step with
stepsize < 1/L (stepsize 1/L takes us to x′). Hence, y′ is also not a critical
point by Lemma 6.3, and we can’t have

∏
k yk = 1.

Consequently, f is smooth over the whole line segment connecting x
and x′.
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6.2.4 Convergence

Theorem 6.9. Let c ≥ 1 and δ > 0 such that x0 > 0 is c-balanced with δ ≤∏
k(x0)k < 1. Choosing stepsize

γ =
1

3dc2
,

gradient descent satisfies

f(xT ) ≤
(
1− δ2

3c4

)T

f(x0), T ≥ 0.

This means that the loss indeed converges to its optimal value 0, and
does so with a fast exponential error decrease. Exercise 44 asks you to
prove that also the iterates themselves converge (to an optimal solution),
so gradient descent will not run off to infinity.

Proof. For each t ≥ 0, f is smooth over conv({xt,xt+1}) with parameter
L = 3dc2, hence Lemma 2.7 yields sufficient decrease:

f(xt+1) ≤ f(xt)−
1

6dc2
∥∇f(xt)∥2 . (6.5)

For every c-balanced x with δ ≤∏k xk ≤ 1, we have

∥∇f(x)∥2 = 2f(x)
d∑

i=1

(∏
k ̸=i

xk

)2

≥ 2f(x)
d

c2

(∏
k

xk

)2−2/d

(Lemma 6.6)

≥ 2f(x)
d

c2

(∏
k

xk

)2

≥ 2f(x)
d

c2
δ2.

Then, (6.5) further yields

f(xt+1) ≤ f(xt)−
1

6dc2
2f(xt)

d

c2
δ2 = f(xt)

(
1− δ2

3c4

)
,

proving the theorem.
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This looks great: just as for strongly convex functions, we seem to have
fast convergence since the function value goes down by a constant factor
in each step. There is a catch, though. To see this, consider the starting
solution x0 = (1/2, . . . , 1/2). This is c-balanced with c = 1, but the δ that
we get is 1/2d. Hence, the “constant factor” is(

1− 1

3 · 4d
)
,

and we need T ≈ 4d to reduce the initial error by a constant factor not
depending on d.

Indeed, for this starting value x0, the gradient is exponentially small,
so we are crawling towards the optimum at exponentially small speed. In
order to get polynomial-time convergence, we need to start with a δ that
decays at most polynomially with d. For large d, this requires us to start
very close to optimality. As a concrete example, let us try to achieve a
constant δ (not depending on d) with a 1-balanced solution of the form
xi = (1− b/d) for all i. For this, we need that(

1− b

d

)d

≈ e−b = Ω(1),

and this requires b = O(1). Hence, we need to start at distance O(1/
√
d)

from the optimal solution (1, . . . , 1).
The problem is due to constant stepsize. Indeed, f is locally much

smoother at small x0 than Lemma 6.8 predicts, so e could afford much
larger steps in the beginning. The lemma covers the “worst case” when
we are close to optimality already.

So could we improve using a time-varying stepsize? The question is
moot: if we know the function f under consideration, we do not need
to run any optimization in the first place. The question we were trying
to address is whether and how a standard gradient descent algorithm is
able to optimize nonconvex functions as well. Above, we have given a
(partially satisfactory) answer for a concrete function: yes, it can, but at a
very slow rate, if d is large and the starting point not close to optimality
yet.
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6.3 Exercises

Exercise 38. Let f : Rn → R twice differentiable, with X ⊆ dom(f) an open
convex set, and suppose that f is smooth with parameter L over X . Prove that
under these conditions, the largest eigenvalue of the Hessian λmax(∇2f(x)) ≤ L
for all x ∈ X .

Exercise 39. Prove that the statement of Theorem 6.2 implies that

lim
t→∞

∥∇f(xt)∥2 = 0.

Exercise 40. Prove Lemma 6.3 (gradient descent does not overshoot on smooth
functions).

Exercise 41. Consider the function f(x) = 1
2

(∏d
k=1 xk − 1

)2
. Prove that for

any starting point x0 ∈ X = {x ∈ Rd : x > 0,
∏

k xk ≥ 1} and any ε > 0,
gradient descent attains f(xT ) ≤ ε for some iteration T .

Exercise 42. Consider the function f(x) = 1
2

(∏d
k=1 xk − 1

)2
. Prove that for

even dimension d ≥ 2, there is a point x0 (not a critical point) such that gradient
descent does not converge to a global minimum when started at x0, regardless of
step size(s).

Exercise 43. Prove that for any matrix A, ∥A∥ ≤ ∥A∥F , where ∥·∥ is the spectral
norm and ∥·∥F the Frobenius norm.

Exercise 44. Prove that the sequence (xT )T≥0 of iterates in Theorem 6.9 con-
verges to a an optimal solution x⋆.
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Chapter 7

Newton’s Method
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7.1 1-dimensional case

The Newton method (or Newton-Raphson method, invented by Sir Isaac
Newton and formalized by Joseph Raphson) is an iterative method for
finding a zero of a differentiable univariate function f : R → R. Starting
from some number x0, it computes

xt+1 := xt −
f(xt)

f ′(xt)
, t ≥ 0. (7.1)

Figure 7.1 shows what happens. xt+1 is the point where the tangent line
to the graph of f at (xt, f(xt)) intersects the x-axis. In formulas, xt+1 is the
solution of the linear equation

f(xt) + f ′(xt)(x− xt) = 0,

and this yields the update formula (7.1).

xt xt+1

f(x)

f(xt) + f ′(xt)(x− xt)

Figure 7.1: One step of Newton’s method

The Newton step (7.1) obviously fails if f ′(xt) = 0 and may get out of
control if |f ′(xt)| is very small. Any theoretical analysis will have to make
suitable assumptions to avoid this. But before going into this, we look at
Newton’s method in a benign case.
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Let f(x) = x2 − R, where R ∈ R+. f has two zeros,
√
R and −

√
R.

Starting for example at x0 = R, we hope to converge to
√
R quickly. In this

case, (7.1) becomes

xt+1 = xt −
x2
t −R

2xt

=
1

2

(
xt +

R

xt

)
. (7.2)

This is in fact the Babylonian method to compute square roots, and here we
see that it is just a special case of Newton’s method.

Can we prove that we indeed quickly converge to
√
R? What we im-

mediately see from (7.2) is that all iterates will be positive and hence

xt+1 =
1

2

(
xt +

R

xt

)
≥ xt

2
.

So we cannot be too fast. Suppose R ≥ 1. In order to even get xt < 2
√
R,

we need at least T ≥ log(R)/2 steps. It turns out that the Babylonian
method starts taking off only when xt −

√
R < 1/2, say (Exercise 45 asks

you to prove that it takes O(logR) steps to get there).
To watch takeoff, let us now suppose that x0 −

√
R < 1/2, so we are

starting close to
√
R already. We rewrite (7.2) as

xt+1 −
√
R =

xt

2
+

R

2xt

−
√
R =

1

2xt

(
xt −

√
R
)2

. (7.3)

Assuming for now that R ≥ 1/4, all iterates have value at least
√
R ≥

1/2, hence we get

xt+1 −
√
R ≤

(
xt −

√
R
)2

.

This means that the error goes to 0 quadratically, and

xT −
√
R ≤

(
x0 −

√
R
)2T

<

(
1

2

)2T

, T ≥ 0. (7.4)

What does this tell us? In order to get xT −
√
R < ε, we only need

T = log log(1
ε
) steps! Hence, it takes a while to get to roughly

√
R, but

from there, we achieve high accuracy very fast.
Let us do a concrete example of the practical behavior (on a computer

with IEEE 754 double arithmetic). If R = 1000, the method takes 7 steps to
get x7−

√
1000 < 1/2, and then 3 more steps to get x13 equal to

√
1000 up to

the machine precision (53 binary digits). In this last phase, we essentially
double the number of correct digits in each iteration!
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7.2 Newton’s method for optimization

Suppose we want to find a global minimum x⋆ of a differentiable con-
vex function f : R → R (assuming that a global minimum exists). Lem-
mata 1.21 and 1.22 guarantee that we can equivalently search for a zero of
the derivative f ′. To do this, we can apply Newton’s method if f is twice
differentiable; the update step then becomes

xt+1 := xt −
f ′(xt)

f ′′(xt)
= xt − f ′′(xt)

−1f ′(xt), t ≥ 0. (7.5)

There is no reason to restrict to d = 1. Here is Newton’s method for min-
imizing a convex function f : Rd → R. We choose x0 arbitrarily and then
iterate:

xt+1 := xt −∇2f(xt)
−1∇f(xt), t ≥ 0. (7.6)

The update vector ∇2f(xt)
−1∇f(xt) is the result of a matrix-vector mul-

tiplication: we invert the Hessian at xt and multiply the result with the
gradient at xt. As before, this fails if the Hessian is not invertible, and may
get out of control if the Hessian has small norm.

We have introduced iteration (7.6) simply as a (more or less natural)
generalization of (7.5), but there’s more to it. If we consider (7.6) as a
special case of a general update scheme

xt+1 = xt −H(xt)∇f(xt),

where H(x) ∈ Rd×d is some matrix, then we see that also gradient de-
scent (2.1) is of this form, with H(xt) = γI . Hence, Newton’s method can
also be thought of as “adaptive gradient descent” where the adaptation is
w.r.t. the local geometry of the function at xt. Indeed, as we show next,
this allows Newton’s method to converge on all nondegenerate quadratic
functions in one step, while gradient descent only does so with the right
stepsize on “beautiful” quadratic functions whose sublevel sets are Eu-
clidean balls (Exercise 22).

Lemma 7.1. A nondegenerate quadratic function is a function of the form

f(x) =
1

2
x⊤Mx− q⊤x+ c,

where M ∈ Rd×d is an invertible symmetric matrix, q ∈ Rd, c ∈ R. Let x⋆ =
M−1q be the unique solution of ∇f(x) = 0 (the unique global minimum if f is
convex). With any starting point x0 ∈ Rd, Newton’s method (7.6) yields x1 = x⋆.
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Proof. We have ∇f(x) = Mx − q (this implies x⋆ = M−1q) and ∇2f(x) =
M . Hence,

x0 −∇2f(x0)
−1∇f(x0) = x0 −M−1(Mx0 − q) = M−1q = x⋆.

In particular, Newton’s method can solve an invertible system Mx = q
of linear equations in one step. But no miracle is happening here, as this
step involves the inversion of the matrix ∇2f(x0) = M .

More generally, the behavior of Newton’s method is affine invariant.
By this, we mean that it is invariant under any invertible affine transfor-
mation, as follows:

Lemma 7.2 (Exercise 46). Let f : Rd → R be twice differentiable, A ∈ Rd×d

an invertible matrix, b ∈ Rd. Let g : Rd → Rd be the (bijective) affine function
g(y) = Ay + b,y ∈ Rd. Finally, for a twice differentiable function h : Rd → R,
let Nh : Rd → Rd denote the Newton step for h, i.e.

Nh(x) := x−∇2h(x)−1∇h(x),

whenever this is defined. Then we have Nf◦g = g−1 ◦Nf ◦ g.

This says that in order to perform a Newton step for f ◦ g on yt, we
can transform yt to xt = g(yt), perform the Newton step for f on x and
transform the result xt+1 back to yt+1 = g−1(xt+1). Another way of saying
this is that the following diagram commutes:

yt yt+1

xt xt+1

Nf◦g

Nf

g g−1
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Hence, while gradient descent suffers if the coordinates are at very dif-
ferent scales, Newton’s method doesn’t.

We conclude the general exposition with another interpretation of New-
ton’s method: each step minimizes the local second-order Taylor approxi-
mation.

Lemma 7.3 (Exercise 49). Let f be convex and twice differentiable at xt ∈
dom(f), with ∇2f(xt) ≻ 0 being invertible. The vector xt+1 resulting from
the Netwon step (7.6) satisfies

xt+1 = argmin
x∈Rd

f(xt) +∇f(xt)
⊤(x− xt) +

1

2
(x− xt)

⊤∇2f(xt)(x− xt).

7.3 Once you’re close, you’re there. . .

We will prove a result about Newton’s method that may seem rather weak:
under suitable conditions, and starting close to the global minimum, we
will reach distance at most ε to the minimum within log log(1/ε) steps.
The weak part here is of course not the number of steps log log(1/ε)—this
is much faster than anything we have seen so far—but the assumption that
we are starting close to the minimum already. Under such an assumption,
we say that we have a local convergence result.

To compensate for the above weakness to some extent, we will be able
to handle non-convex functions as well. More precisely, we show that un-
der the aforementioned suitable conditions, and starting close to a crit-
ical point, we will reach distance at most ε to the critical point within
log log(1/ε) steps. This can of course only work if the conditions ensure
that we are close to only one critical point; so we have a unique critical
point nearby, and Newton’s method will have no choice other than to con-
verge to it.

For convex functions, we can ask about global convergence results that
hold for every starting point. In general, such results were unknown for
Newton’s method as in (7.6) until recently. Under a stability assump-
tion on the Hessian, global convergence was shown to hold by [KSJ18].
There are some variants of Newton’s method for which such results can
be proved, most notably the cubic regularization variant of Nesterov and
Polyak [NP06]. Weak global convergence results can be obtained by adding
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a step size to (7.6) and always making only steps that decrease the function
value (which may not happen under the full Newton step).

An alternative is to use gradient descent to get us sufficiently close to
the global minimum, and then switch to Newton’s method for the rest. In
Chapter 2, we have seen that under favorable conditions, we may know
when gradient descent has taken us close enough.

In practice, Newton’s method is often (but not always) much faster
than gradient descent in terms of the number of iterations. The price to pay
is a higher iteration cost, since we need to compute (and invert) Hessians.

After this disclaimer, let us state the main result right away. We follow
Vishnoi [Vis15], except that we do not require convexity.

Theorem 7.4. Let f : dom(f) → R be twice differentiable with a critical
point x⋆. Suppose that there is a ball X ⊆ dom(f) with center x⋆ such that
the following two properties hold.

(i) Bounded inverse Hessians: There exists a real number µ > 0 such that

∥∇2f(x)−1∥ ≤ 1

µ
, ∀x ∈ X.

(ii) Lipschitz continuous Hessians: There exists a real number B ≥ 0 such
that

∥∇2f(x)−∇2f(y)∥ ≤ B∥x− y∥ ∀x,y ∈ X.

In both cases, the matrix norm is the spectral norm defined in Lemma 2.6. Prop-
erty (i) in particular stipulates that Hessians are invertible at all points in X .

Then, for xt ∈ X and xt+1 resulting from the Newton step (7.6), we have

∥xt+1 − x⋆∥ ≤ B

2µ
∥xt − x⋆∥2.

As an example, let us consider a nondegenerate quadratic function f
(constant Hessian M = ∇2f(x) for all x; see Lemma 7.1). Then f has ex-
actly one critical point x⋆. Property (i) is satisfied with µ = 1/∥M−1∥ over
X = Rd; property (ii) is satisfied for B = 0. According to the statement of
the theorem, Newton’s method will thus reach x⋆ after one step—which
we already know from Lemma 7.1.

In general, there could be several critical points for which properties
(i) and (ii) hold, and it may seem surprising that the theorem makes a
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statement about all of them. But in fact, if xt is far away from such a
critical point, the statement allows xt+1 to be even further away from it; we
cannot expect to make progress towards all critical points simultaneously.
The theorem becomes interesting only if we are very close to some critical
point. In this case, we will actually converge to it. In particular, this critical
point is then isolated and the only one nearby, so that Newton’s method
cannot avoid getting there.

Corollary 7.5 (Exercise 47). With the assumptions and terminology of Theo-
rem 7.4, and if x0 ∈ X satisfies

∥x0 − x⋆∥ ≤ µ

B
,

then Newton’s method (7.6) yields

∥xT − x⋆∥ ≤ µ

B

(
1

2

)2T−1

, T ≥ 0.

Hence, we have a bound as (7.4) for the last phase of the Babylonian
method: in order to get ∥xT − x⋆∥ < ε, we only need T = log log(1

ε
) steps.

But before this fast behavior kicks in, we need to be µ/B-close to x⋆ al-
ready. The fact that x0 is this close to only one critical point necessarily
follows.

An intuitive reason for a unique critical point near x0 (and for fast con-
vergence to it) is that under our assumptions, the Hessians we encounter
are almost constant when we are close to x⋆. This means that locally, our
function behaves almost like a nondegenerate quadratic function which
has truly constant Hessians and allows Newton’s method to convergence
to its unique critical point in one step (Lemma 7.1).

Lemma 7.6 (Exercise 48). With the assumptions and terminology of Theorem 7.4,
and if x0 ∈ X satisfies

∥x0 − x⋆∥ ≤ µ

B
,

then the Hessians in Newton’s method satisfy the relative error bound

∥∇2f(xt)−∇2f(x⋆)∥
∥∇2f(x⋆)∥ ≤

(
1

2

)2t−1

, t ≥ 0.
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We now still owe the reader the proof of the main convergence result,
Theorem 7.4:

Proof of Theorem 7.4. To simplify notation, let us abbreviate H := ∇2f , x =
xt,x

′ = xt+1. Subtracting x⋆ from both sides of (7.6), we get

x′ − x⋆ = x− x⋆ −H(x)−1∇f(x)

= x− x⋆ +H(x)−1(∇f(x⋆)−∇f(x))

= x− x⋆ +H(x)−1

∫ 1

0

H(x+ t(x⋆ − x))(x⋆ − x)dt.

The last step, which applies the fundamental theorem of calculus, needs
some explanations. In fact, we have applied it to each component hi(t) of
the vector-valued function h(t) = ∇f(x+ t(x⋆ − x)):

hi(1)− hi(0) =

∫ 1

0

h′
i(t), i = 1, . . . , d.

These d equations can be summarized as

∇f(x⋆)−∇f(x) = h(1)− h(0) =

∫ 1

0

h′(t),

where h′(t) has components h′
1(t), . . . , h

′
d(t), and the integral is also under-

stood componentwise. Furthermore, as hi(t) =
∂f
∂xi

(x+t(x⋆−x)), the chain
rule yields h′

i(t) =
∑d

j=1
∂f
∂xij

(x + t(x⋆ − x))(x⋆
j − xj). This summarizes to

h′(t) = H(x+ t(x⋆ − x))(x⋆ − x).
Also note that we are allowed to apply the fundamental theorem of

calculus in the first place, since f is twice continuously differentiable over
X (as a consequence of assuming Lipschitz continuous Hessians), so also
h′(t) is continuous.

After this justifying intermezzo, we further massage the expression we
have obtained last. Using

x− x⋆ = H(x)−1H(x)(x− x⋆) = H(x)−1

∫ 1

0

−H(x)(x⋆ − x)dt,

we can now write

x′ − x⋆ = H(x)−1

∫ 1

0

(H(x+ t(x⋆ − x))−H(x)) (x⋆ − x)dt.
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Taking norms, we have

∥x′ − x⋆∥ ≤ ∥H(x)−1∥ ·
∥∥∥∥∫ 1

0

(H(x+ t(x⋆ − x))−H(x)) (x⋆ − x)dt

∥∥∥∥ ,
by the properties of the spectral norm. As we also have∥∥∥∥∫ 1

0

g(t)dt

∥∥∥∥ ≤
∫ 1

0

∥g(t)∥dt

for any vector-valued function g (Exercise 51), we can further bound

∥x′ − x⋆∥ ≤ ∥H(x)−1∥
∫ 1

0

∥∥(H(x+ t(x⋆ − x))−H(x)
)
(x⋆ − x)

∥∥dt
≤ ∥H(x)−1∥

∫ 1

0

∥∥H(x+ t(x⋆ − x))−H(x)
∥∥ · ∥x⋆ − x∥dt

= ∥H(x)−1∥ · ∥x⋆ − x∥
∫ 1

0

∥∥H(x+ t(x⋆ − x))−H(x)
∥∥dt.

We can now use the properties (i) and (ii) (bounded inverse Hessians, Lip-
schitz continuous Hessians) to conclude that

∥x′ − x⋆∥ ≤ 1

µ
∥x⋆ − x∥

∫ 1

0

B∥t(x⋆ − x)∥dt = B

µ
∥x⋆ − x∥2

∫ 1

0

tdt︸ ︷︷ ︸
1/2

.

How realistic are properties (i) and (ii)? If f is twice continuously dif-
ferentiable (meaning that the second derivative ∇2f is continuous), then
we will always find suitable values of µ and B over a ball X with center
x⋆—provided that ∇2f(x⋆) ̸= 0.

Indeed, already in the one-dimensional case, we see that under f ′′(x⋆) =
0 (vanishing second derivative at the global minimum), Newton’s method
will in the worst reduce the distance to x⋆ at most by a constant factor in
each step, no matter how close to x⋆ we start. Exercise 50 asks you to find
such an example. In such a case, we have linear convergence, but the fast
quadratic convergence (O(log log(1/ε)) steps cannot be proven.

One way to ensure bounded inverse Hessians is to require strong con-
vexity over X .
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Lemma 7.7 (Exercise 52). Let f : dom(f) → R be twice differentiable and
strongly convex with parameter µ over an open convex subset X ⊆ dom(f)
according to Definition 2.10, meaning that

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µ

2
∥x− y∥2, ∀x,y ∈ X.

Then ∇2f(x) is invertible and ∥∇2f(x)−1∥ ≤ 1/µ for all x ∈ X , where ∥ · ∥ is
the spectral norm defined in Lemma 2.6.

7.4 Exercises

Exercise 45. Consider the Babylonian method (7.2). Prove that we get xT −√
R < 1/2 for T = O(logR).

Exercise 46. Prove Lemma 7.2!

Exercise 47. Prove Corollary 7.5!

Exercise 48. Prove Lemma 7.6!

Exercise 49. Prove Lemma 7.3!

Exercise 50. Let δ > 0 be any real number. Find an example of a convex function
f : R → R such that (i) the unique global minimum x⋆ has a vanishing second
derivative f ′′(x⋆) = 0, and (ii) Newton’s method satisfies

|xt+1 − x⋆| ≥ (1− δ)|xt − x⋆|,
for all xt ̸= x⋆.

Exercise 51. This exercise is just meant to recall some basics around integrals.
Show that for a vector-valued function g : R→ Rd, the inequality∥∥∥∥∫ 1

0

g(t)dt

∥∥∥∥ ≤
∫ 1

0

∥g(t)∥dt

holds, where ∥ · ∥ is the 2-norm (always assuming that the funtions under consid-
eration are integrable)! You may assume (i) that integrals are linear:∫ 1

0

(λ1g1(t) + λ2g2(t))dt = λ1

∫ 1

0

g1(t)dt+ λ2

∫ 1

0

g2(t)dt,

And (ii), if g(t) ≥ 0 for all t ∈ [0, 1], then
∫ 1

0
g(t)dt ≥ 0.
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Exercise 52. Prove Lemma 7.7! You may want to proceed in the following steps.

(i) Prove that the function g(x) = f(x) − µ
2
∥x∥2 is convex over X (see also

Exercise 20).

(ii) Prove that ∇2f(x) is invertible for all x ∈ X .

(iii) Prove that all eigenvalues of ∇2f(x)−1 are positive and at most 1/µ.

(iv) Prove that for a symmetric matrix M , the spectral norm ∥M∥ is the largest
absolute eigenvalue.
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The main computational bottleneck in Newton’s method (7.6) is the
computation and inversion of the Hessian matrix in each step. This matrix
has size d × d, so it will take up to O(d3) time to invert it (or to solve the
system ∇2f(xt)∆x = −∇f(xt) that gives us the next Newton step ∆x).
Already in the 1950s, attempts were made to circumvent this costly step,
the first one going back to Davidon [Dav59].

In this chapter, we will (for a change) not prove convergence results;
rather, we focus on the development of Quasi-Newton methods, and how
state-of-the-art methods arise from first principles. To motivate the ap-
proach, let us go back to the 1-dimensional case.

8.1 The secant method

Like Newton’s method (7.1), the secant method is an iterative method for
finding a zero of a univariate function. Unlike Newton’s method, it does
not use derivatives and hence does not require the function under con-
sideration to be differentiable. In fact, it is (therefore) much older than
Newton’s method. Reversing history and starting from the Newton step

xt+1 := xt −
f(xt)

f ′(xt)
, t ≥ 0,

we can derive the secant method by replacing the derivative f ′(xt) with its
finite difference approximation

f(xt)− f(xt−1)

xt − xt−1

.

As we (in the differentiable case) have

f ′(xt) = lim
x→xt

f(xt)− f(x)

xt − x
,

we get
f(xt)− f(xt−1)

xt − xt−1

≈ f ′(xt)

for |xt − xt−1| small. As the method proceeds, we expect consecutive iter-
ates xt−1, xt to become closer and closer, so that the secant step

xt+1 := xt − f(xt)
xt − xt−1

f(xt)− f(xt−1)
, t ≥ 1 (8.1)
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approximates the Newton step (two starting values x0, x1 need to be cho-
sen here). Figure 8.1 shows what the method does: it constructs the line
through the two points (xt−1, f(xt−1)) and (xt, f(xt)) on the graph of f ; the
next iterate xt+1 is where this line intersects the x-axis. Exercise 53 asks
you to formally prove this.

xt xt+1

f(x)

xt−1

Figure 8.1: One step of the secant method

Convergence of the secant method can be analyzed, but we don’t do
this here. The main point for us is that we now have a derivative-free ver-
sion of Newton’s method.

When the task is to optimize a differentiable univariate function, we
can apply the secant method to its derivative to obtain the secant method
for optimization:

xt+1 := xt − f ′(xt)
xt − xt−1

f ′(xt)− f ′(xt−1)
, t ≥ 1. (8.2)

This is a second-derivative-free version of Newton’s method (7.5) for opti-
mization. The plan is now to generalize this to higher dimensions to obtain
a Hessian-free version of Newton’s method (7.6) for optimization over Rd.
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8.2 The secant condition

Applying finite difference approximation to the second derivative of f
(we’re still in the 1-dimensional case), we get

Ht :=
f ′(xt)− f ′(xt−1)

xt − xt−1

≈ f ′′(xt),

which we can write as

f ′(xt)− f ′(xt−1) = Ht(xt − xt−1) ≈ f ′′(xt)(xt − xt−1). (8.3)

Now, while Newton’s method for optimization uses the update step

xt+1 = xt − f ′′(xt)
−1f ′(xt), t ≥ 0,

the secant method works with the approximation Ht ≈ f ′′(xt):

xt+1 = xt −H−1
t f ′(xt), t ≥ 1. (8.4)

The fact that Ht approximates f ′′(xt) in the twice differentiable case
was our motivation for the secant method, but in the method itself, there
is no reference to f ′′ (which is exactly the point). All that is needed is the
secant condition from (8.3) that defines Ht:

f ′(xt)− f ′(xt−1) = Ht(xt − xt−1). (8.5)

This view can be generalized to higher dimensions. If f : Rd → R is
differentiable, (8.4) becomes

xt+1 = xt −H−1
t ∇f(xt), t ≥ 1, (8.6)

where Ht ∈ Rd×d is now supposed to be a symmetric matrix satisfying the
d-dimensional secant condition

∇f(xt)−∇f(xt−1) = Ht(xt − xt−1). (8.7)

8.3 Quasi-Newton methods

If f is twice differentiable, the secant condition (8.7) along with the first-
order Taylor approximation of ∇f(x) yields the d-dimensional analog of
(8.3):

∇f(xt)−∇f(xt−1) = Ht(xt − xt−1) ≈ ∇2f(xt)(xt − xt−1),
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We might therefore hope that Ht ≈ ∇2f(xt), and this would mean that
(8.6) approximates Newton’s method. Therefore, whenever we use (8.6)
with a symmetric matrix satisfying the secant condition (8.7), we say that
we have a Quasi-Newton method.

In the 1-dimensional case, there is only one Quasi-Newton method—
the secant method (8.1). Indeed, equation (8.5) uniquely defines the num-
ber Ht in each step.

But in the d-dimensional case, the matrix Ht in the secant condition is
underdetermined, starting from d = 2: Taking the symmetry requirement
into account, (8.7) is a system of d equations in d(d+ 1)/2 unknowns, so if
it is satisfiable at all, there are many solutions Ht. This raises the question
of which one to choose, and how to do so efficiently; after all, we want to
get some savings over Newton’s method.

Newton’s method is a Quasi-Newton method if and only if f is a non-
degenerate quadratic function (Exercise 54). Hence, Quasi-Newton meth-
ods do not generalize Newton’s method but form a family of related algo-
rithms.

The first Quasi-Newton method was developed by William C. Davi-
don in 1956; he desperately needed iterations that were faster than those
of Newton’s method in order obtain results in the short time spans be-
tween expected failures of the room-sized computer that he used to run
his computations on.

But the paper he wrote about his new method got rejected for lacking
a convergence analysis, and for allegedly dubious notation. It became a
very influential Technical Report in 1959 [Dav59] and was finally officially
published in 1991, with a foreword giving the historical context [Dav91].
Ironically, Quasi-Newton methods are today the methods of choice in a
number of relevant machine learning applications.

8.4 Greenstadt’s approach (Optional Material)

For efficieny reasons (we want to avoid matrix inversions), Quasi-Newton
methods typically directly deal with the inverse matrices H−1

t . Suppose
that we have the iterates xt−1,xt as well as the matrix H−1

t−1; now we want
to compute a matrix H−1

t to perform the next Quasi-Newton step (8.6).
How should we choose H−1

t ?
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We draw some intuition from (the analysis of) Newton’s method. Re-
call that we have shown ∇2f(xt) to fluctuate only very little in the region
of extremely fast convergence (Lemma 7.6); in fact, Newton’s method is
optimal (one step!) when ∇2f(xt) is actually constant— this is the case of
a quadratic function, see Lemma 7.1. Hence, in a Quasi-Newton method,
it also makes sense to have that Ht ≈ Ht−1, or H−1

t ≈ H−1
t−1.

Greenstadt’s approach from 1970 [Gre70] is to update H−1
t−1 by an “error

matrix” Et to obtain
H−1

t = H−1
t−1 + Et.

Moreover, the errors should be as small as possible, subject to the con-
straints that H−1

t is symmetric and satisfies the secant condition (8.7). A
simple measure of error introduced by an update matrix E is its squared
Frobenius norm

∥E∥2F :=
d∑

i=1

d∑
j=1

e2ij.

Since Greenstadt considered the resulting Quasi-Newton method as “too
specialized”, he searched for a compromise between variability in the method
and simplicity of the resulting formulas. This led him to minimize the er-
ror term

∥AEA⊤∥2F ,
where A ∈ Rd×d is some fixed invertible transformation matrix. If A = I ,
we recover the squared Frobenius norm of E.

Let us now fix t and simplify notation by setting

H := H−1
t−1,

H ′ := H−1
t ,

E := Et,

σ := xt − xt−1,

y = ∇f(xt)−∇f(xt−1),

r = σ −Hy.

The update formula then is

H ′ = H + E, (8.8)

and the secant condition ∇f(xt)−∇f(xt−1) = Ht(xt − xt−1) becomes

H ′y = σ (⇔ Ey = r). (8.9)
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Greenstadt’s approach can now be distilled into the following convex
constrained minimization problem in the d2 variables Eij :

minimize 1
2
∥AEA⊤∥2F

subject to Ey = r
E⊤ − E = 0

(8.10)

8.4.1 The method of Lagrange multipliers

Minimization subject to equality constraints can be done via the method
of Lagrange multipliers. Here we need it only for the case of linear equality
constraints in which case the method assumes a very simple form.

Theorem 8.1. Let f : Rd → R be convex and differentiable, C ∈ Rm×d for some
m ∈ N, e ∈ Rm, x⋆ ∈ Rd such that Cx⋆ = e. Then the following two statements
are equivalent.

(i) x⋆ = argmin{f(x) : x ∈ Rd, Cx = e}

(ii) There exists a vector λ ∈ Rm such that

∇f(x⋆)⊤ = λ⊤C.

The entries of λ are known as the Lagrange multipliers.

For completeness we reprove Theorem 8.1 here, via elementary argu-
ments.

Proof. The easy direction is (ii)⇒(i): if λ as specified exists and x ∈ Rd

satisfies Cx = e, we get

∇f(x⋆)⊤(x− x⋆) = λ⊤C(x− x⋆) = λ⊤(e− e) = 0.

Hence, x⋆ is a minimizer of f over {x ∈ Rd : Cx = e} by the optimality
condition of Lemma 1.27.

The other direction is Exercise 55.
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8.4.2 Application to Greenstadt’s Update

In order to apply this method to (8.10), we need to compute the gradient
of f(E) = 1

2
∥AEA⊤∥2F . Formally, this is a d2-dimensional vector, but it is

customary and more practical to write it as a matrix again,

∇f(E) =

(
∂f(E)

∂Eij

)
1≤i,j≤d

.

Fact 8.2 (Exercise 56). Let A,B ∈ Rd×d two matrices. With f : Rd×d → R,
f(E) := 1

2
∥AEB∥2F , we have

∇f(E) = A⊤AEBB⊤.

The second step is to write the system of equations Ey = r, E⊤−E = 0
in Greenstadt’s convex program (8.10) in matrix form Cx = e so that we
can apply the method of Lagrange multipliers according to Theorem 8.1.

As there are d + d2 equations in d2 variables, it is best to think of the
rows of C as being indexed with elements i ∈ [d] := {1, . . . , d} for the first
d equations Ey = r, and pairs (i, j) ∈ [d] × [d] for the last d2 symmetry
constraints (more than half of which are redundant but we don’t care).
Columns of C are indexed with pairs (i, j) as well.

Let us denote by λ ∈ Rd the Lagrange multipliers for the first d equa-
tions and Γ ∈ Rd×d the ones for the last d2 ones.

In column (i, j) of C corresponding to variable Eij , we have entry yj in
row i as well as entries 1 (row (j, i)) and −1 (row (i, j)). Taking the inner
product with the Lagrange multipliers, this column therefore yields

λiyj + Γji − Γij.

After aggregating these entries into a d × d matrix, Theorem 8.1 tells us
that we should aim for equality with ∇f(E) as derived in Fact 8.2. We
have proved the following intermediate result.

Lemma 8.3. An update matrix E⋆ satisfying the constraints Ey = r (secant
condition in the next step) and E⊤ − E = 0 (symmetry) is a minimizer of the
error function f(E) := 1

2
∥AEA⊤∥2F subject to the aforementioned constraints if

and only if there exists a vector λ ∈ Rd and a matrix Γ ∈ Rd×d such that

WE⋆W = λy⊤ + Γ⊤ − Γ, (8.11)

where W := A⊤A (a symmetric and positive definite matrix).
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Note that λy⊤ is the outer product of a column and a row vector and
hence a matrix. As we assume A to be invertible, the quadratic func-
tion f(E) is easily seen to be strongly convex and as a consequence has
a unique minimizer E⋆ subject to the set of linear equations in (8.10) (see
Lemma 2.12 which also applies if we minimize over a closed set). Hence,
we know that the minimizer E⋆ and corresponding Lagrange multipiers
λ,Γ exist.

8.4.3 The Greenstadt family

We need to solve the system of equations

Ey = r, (8.12)
E⊤ − E = 0, (8.13)
WEW = λy⊤ + Γ⊤ − Γ. (8.14)

This system is linear in E,λ,Γ, hence easy to solve computationally. How-
ever, we want a formula for the unique solution E⋆ in terms of the pa-
rameters W,y,σ = r+Hy. In the following derivation, we closely follow
Greenstadt [Gre70, pages 4–5].

With M := W−1 (which exists since W = A⊤A is positive definite),
(8.14) can be rewritten as

E = M
(
λy⊤ + Γ⊤ − Γ

)
M. (8.15)

Transposing this system (using that M is symmetric) yields

E⊤ = M
(
yλ⊤ + Γ− Γ⊤)M.

By symmetry (8.13), we can subtract the latter two equations to obtain

M
(
λy⊤ − yλ⊤ + 2Γ⊤ − 2Γ

)
M = 0.

As M is invertible, this is equivalent to

Γ⊤ − Γ =
1

2

(
yλ⊤ − λy⊤) ,

so we can eliminate Γ by substituting back into (8.15):

E = M

(
λy⊤ +

1

2

(
yλ⊤ − λy⊤))M =

1

2
M
(
λy⊤ + yλ⊤)M. (8.16)
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To also eliminate λ, we now use (8.12)—the secant condition in the next
step—to get

Ey =
1

2
M
(
λy⊤ + yλ⊤)My = r.

Premultiplying with 2M−1 gives

2M−1r =
(
λy⊤ + yλ⊤)My = λy⊤My + yλ⊤My.

Hence,

λ =
1

y⊤My

(
2M−1r− yλ⊤My

)
. (8.17)

To get rid of λ on the right hand side, we premultiply this with y⊤M to
obtain

y⊤Mλ︸ ︷︷ ︸
z

=
1

y⊤My

2y⊤r− (y⊤My)(λ⊤My︸ ︷︷ ︸
z

)

 =
2y⊤r

y⊤My
− λ⊤My︸ ︷︷ ︸

z

It follows that

z = λ⊤My =
y⊤r

y⊤My
.

This in turn can be substituted into the right-hand side of (8.17) to remove
λ there, and we get

λ =
1

y⊤My

(
2M−1r− (y⊤r)

y⊤My
y

)
.

Consequently,

λy⊤ =
1

y⊤My

(
2M−1ry⊤ − (y⊤r)

y⊤My
yy⊤

)
,

yλ⊤ =
1

y⊤My

(
2yr⊤M−1 − (y⊤r)

y⊤My
yy⊤

)
.

This gives us an explicit formula for E, by substituting the previous ex-
pressions back into (8.16). For this, we compute

Mλy⊤M =
1

y⊤My

(
2ry⊤M − (y⊤r)

y⊤My
Myy⊤M

)
,

Myλ⊤M =
1

y⊤My

(
2Myr⊤ − (y⊤r)

y⊤My
Myy⊤M

)
,
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and consequently,

E =
1

2
M
(
λy⊤ + yλ⊤)M =

1

y⊤My

(
ry⊤M +Myr⊤ − (y⊤r)

y⊤My
Myy⊤M

)
.

(8.18)
Finally, we use r = σ − Hy to obtain the update matrix E⋆ in terms
of the original parameters H = H−1

t−1 (previous approximation of the in-
verse Hessian that we now want to update to H−1

t = H ′ = H + E⋆),
σ = xt − xt−1 (previous Quasi-Newton step) and y = ∇f(xt) − ∇f(xt−1)
(previous change in gradients). This gives us the Greenstadt family of
Quasi-Newton methods.

Definition 8.4. Let M ∈ Rd×d be a symmetric and invertible matrix. Consider
the Quasi-Newton method

xt+1 = xt −H−1
t ∇f(xt), t ≥ 1,

where H0 = I (or some other positive definite matrix), and H−1
t = H−1

t−1 + Et is
chosen for all t ≥ 1 in such a way that H−1

t is symmetric and satisfies the secant
condition

∇f(xt)−∇f(xt−1) = Ht(xt − xt−1).

For any fixed t, set

H := H−1
t−1,

H ′ := H−1
t ,

σ := xt − xt−1,

y := ∇f(xt)−∇f(xt−1),

and define

E⋆ =
1

y⊤My

(
σy⊤M + Myσ⊤ −Hyy⊤M −Myy⊤H

− 1

y⊤My
(y⊤σ − y⊤Hy)Myy⊤M

)
. (8.19)

If the update matrix Et = E⋆ is used, the method is called the Greenstadt
method with parameter M .

136



8.4.4 The BFGS method

In his paper, Greenstadt suggested two obvious choices for the matrix M
In Definition 8.4, namely M = H (the previous approximation of the in-
verse Hessian) and M = I . In the next paper of the same issue of the same
journal, Goldfarb suggested to use the matrix M = H ′, the next approxi-
mation of the inverse Hessian. Even though we don’t yet have it, we can
use it in the formula (8.19) since we know that H ′ will by design satisfy the
secant condition H ′y = σ. And as M always appears next to y in (8.19),
My = H ′y = σ, so H ′ disappears from the formula!

Definition 8.5. The BFGS method is the Greenstadt method with parameter
M = H ′ = H−1

t in step t, in which case the update matrix E⋆ assumes the form

E⋆ =
1

y⊤σ

(
2σσ⊤ −Hyσ⊤ − σy⊤H − 1

σ⊤y
(y⊤σ − y⊤Hy)σσ⊤

)
=

1

y⊤σ

(
−Hyσ⊤ − σy⊤H +

(
1 +

y⊤Hy

y⊤σ

)
σσ⊤

)
., (8.20)

where H = H−1
t−1,σ = xt − xt−1,y = ∇f(xt)−∇f(xt−1).

We leave it as Exercise 57 (i) to prove that the denominator y⊤σ appear-
ing twice in the formula is positive, unless the function f is flat between
the iterates xt−1 and xt. And under y⊤σ > 0, the BFGS method has an-
other nice property: if the previous matrix H is positive definite, then also
the next matrix H ′ is positive definite; see Exercise 57 (ii). In this sense, the
matrices H−1

t behave like proper inverse Hessians.
The method is named after Broyden, Fletcher, Goldfarb and Shanno

who all came up with it independently around 1970. Greenstadt’s name is
mostly forgotten.

Let’s take a step back and see what we have achieved. Recall that our
starting point was that Newton’s method needs to compute and invert
Hessian matrices in each iteration and therefore has in practice a cost of
O(d3) per iteration. Did we improve over this?

First of all, any method in Greenstadt’s family avoids the computation
of Hessian matrices altogether. Only gradients are needed. In the BFGS
method in particular, the cost per iteration drops to O(d2). Indeed, the
computation of the update matrix E⋆ in Definition 8.5 reduces to matrix-
vector multiplications and outer-product computations, all of which can
be done in O(d2) time.
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Newton and Quasi-Newton methods are often performed with scaled
steps. This means that the iteration becomes

xt+1 = xt − αtH
−1
t ∇f(xt), t ≥ 1, (8.21)

for some αt ∈ R+. This parameter can for example be chosen such that
f(xt+1) is minimized (line search). Another approach is backtracking line
search where we start with αt = 1, and as long as this does not lead to
sufficient progress, we halve αt. Line search ensures that the matrices H−1

t

in the BFGS method remain positive definite [Gol70].
As the Greenstadt update method just depends on the step σ = xt −

xt−1 but not on how it was obtained, the update works in exactly the same
way as before even if scaled steps are being used.

8.4.5 The L-BFGS method

In high dimensions d, even an iteration cost of O(d2) as in the BFGS method
may be prohibitive. In fact, already at the end of the 1970s, the first limited
memory (and limited time) variants of the method have been proposed.
Here we essentially follow Nocedal [Noc80]. The idea is to use only in-
formation from the previous m iterations, for some small value of m, and
“forget” anything older. In order to describe the resulting L-BFGS method,
we first rewrite the BFGS update formula in product form.

Observation 8.6. With E⋆ as in Definition 8.5 and H ′ = H + E⋆, we have

H ′ =

(
I − σy⊤

y⊤σ

)
H

(
I − yσ⊤

y⊤σ

)
+

σσ⊤

y⊤σ
. (8.22)

To verify this, simply expand the product in the right-hand side and
compare with (8.20).

We further observe that we do not need the actual matrix H ′ = H−1
t to

perform the next Quasi-Newton step (8.6), but only the vector H ′∇f(xt).
Here is the crucial insight.

Lemma 8.7. Let H,H ′ as in Observation 8.6, i.e.

H ′ =

(
I − σy⊤

y⊤σ

)
H

(
I − yσ⊤

y⊤σ

)
+

σσ⊤

y⊤σ
.
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Let g′ ∈ Rd. Suppose that we have an oracle to compute s = Hg for any vector
g. Then s′ = H ′g′ can be computed with one oracle call and O(d) additional
arithmetic operations, assuming that σ and y are known.

Proof. From (8.22), we conclude that

H ′g′ =

(
I − σy⊤

y⊤σ

)
H

(
I − yσ⊤

y⊤σ

)
g′︸ ︷︷ ︸

g︸ ︷︷ ︸
s︸ ︷︷ ︸

w

+
σσ⊤

y⊤σ
g′︸ ︷︷ ︸

h

︸ ︷︷ ︸
z

.

We compute the vectors h,g, s,w, z in turn. We have

h =
σσ⊤

y⊤σ
g′ = σ

σ⊤g′

y⊤σ
,

so h can be computed with two inner products, a real division, and a mul-
tiplication of σ with a scalar. For g, we obtain

g =

(
I − yσ⊤

y⊤σ

)
g′ = g′ − y

σ⊤g′

y⊤σ
.

which is a multiplication of y with a scalar that we already know, followed
by a vector addition. To get s = Hg, we call the oracle. For w, we similarly
have

w =

(
I − σy⊤

y⊤σ

)
s = s− σ

y⊤s

y⊤σ
,

which is one inner product (the other one we already know), a real divison,
a multiplication of σ with a scalar, and a vector addition. Finally,

H ′g′ = z = w + h

is a vector addition. In total, we needed three inner product computations,
three scalar multiplications, three vector additions, two real divisions, and
one oracle call.
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How do we implement the oracle? We simply apply the previous
Lemma recursively. Let

σk = xk − xk−1,

yk = ∇f(xk)−∇f(xk−1)

be the values of σ and y in iteration k ≤ t. When we perform the Quasi-
Newton step xt+1 = xt − H−1

t ∇f(xt) in iteration t ≥ 1, we have already
computed these vectors for k = 1, . . . , t. Using Lemma 8.7, we could there-
fore call the recursive procedure in Figure 8.2 with k = t,g′ = ∇f(xt) to
compute the required vector H−1

t ∇f(xt) in iteration t. To maintain the im-
mediate connection to Lemma 8.7, we refrain from introducing extra vari-
ables for values that occur several times; but in an actual implementation,
this would be done, of course.

function BFGS-STEP(k,g′) ▷ returns H−1
k g′

if k = 0 then
return H−1

0 g′

else ▷ apply Lemma 8.7

h = σ
σ⊤

k g
′

y⊤
k σk

g = g′ − y
σ⊤

k g
′

y⊤
k σk

s = BFGS-STEP(k − 1,g)

w = s− σk
y⊤
k s

y⊤
k σk

z = w + h
return z

end if
end function

Figure 8.2: Recursive view of the BFGS method. To compute H−1
t ∇f(xt),

call the function with arguments (t,∇f(xt)); values σk,yk from iterations
1, . . . , t are assumed to be available.

By Lemma 8.7, the runtime of BFGS-STEP(t,∇f(xt)) is O(td). For t >
d, this is slower (and needs more memory) than the standard BFGS step
according to Definition 8.5 which always takes O(d2) time.
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The benefit of the recursive variant is that it can easily be adapted to
a step that is faster (and needs less memory) than the standard BFGS step.
The idea is to let the recursion bottom out after a fixed number m of recur-
sive calls (in practice, values of m ≤ 10 are not uncommon). The step then
has runtime O(md) which is a substantial saving over the standard step if
m is much smaller than d.

The only remaining question is what we return when the recursion
now bottoms out prematurely at k = t−m. As we don’t know the matrix
H−1

t−m, we cannot return H−1
t−mg

′ (which would be the correct output in this
case). Instead, we pretend that we have started the whole method just now
and use our initial matrix H0 instead of Ht−m.1 The resulting algorithm is
depicted in Figure 8.3.

function L-BFGS-STEP(k, ℓ,g′) ▷ ℓ ≤ k; returns s′ ≈ H−1
k g′

if ℓ = 0 then
return H−1

0 g′

else ▷ apply Lemma 8.7

h = σ
σ⊤

k g
′

y⊤
k σk

g = g′ − y
σ⊤

k g
′

y⊤
k σk

s = L-BFGS-STEP(k − 1, ℓ− 1,g)

w = s− σk
y⊤
k s

y⊤
k σk

z = w + h
return z

end if
end function

Figure 8.3: The L-BFGS method. To compute H−1
t ∇f(xt) based on the pre-

vious m iterations, call the function with arguments (t,m,∇f(xt)); values
σk,yk from iterations t−m+ 1, . . . , t are assumed to be available.

Note that the L-BFGS method is still a Quasi-Newton method as long
as m ≥ 1: if we go through at least one update step of the form H ′ = H+E,

1In practice, we can do better: as we already have some information from previous
steps, we can use this information to construct a more tuned H0. We don’t go into this
here.
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the matrix H ′ will satisfy the secant condition by design, irrespective of H .

8.5 Exercises

Exercise 53. Consider a step of the secant method:

xt+1 = xt − f(xt)
xt − xt−1

f(xt)− f(xt−1)
, t ≥ 1.

Assuming that xt ̸= xt−1 and f(xt) ̸= f(xt−1), prove that the line through
the two points (xt−1, f(xt−1)) and (xt, f(xt)) intersects the x-axis at the point
x = xt+1.

Exercise 54. Let f : Rd → R be a twice differentiable function with nonzero
Hessians everywhere. Prove that the following two statements are equivalent.

(i) f is a nondegenerate quadratic function, meaning that

f(x) =
1

2
x⊤Mx− q⊤x+ c,

where M ∈ Rd×d is an invertible symmetric matrix, q ∈ Rd, c ∈ R (see
also Lemma 7.1).

(ii) Applied to f , Newton’s update step

xt+1 := xt −∇2f(xt)
−1∇f(xt), t ≥ 1

defines a Quasi-Newton method for all x0,x1 ∈ Rd.

Exercise 55. Prove the direction (i)⇒(ii) of Theorem 8.1! You may want to do
proceed in the following steps.

1. Prove the Poor Man’s Farkas Lemma: a system of n linear equations
Ax = b in d variables has a solution if and only if for all λ ∈ Rn, λ⊤A =
0⊤ implies λ⊤b = 0. (You may use the fact that the row rank of a matrix
equals its column rank.)

2. Argue that x⋆ = argmin{∇f(x⋆)⊤x : x ∈ Rd, Cx = e}.

3. Apply the Poor Man’s Farkas Lemma.
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Exercise 56. Prove Fact 8.2!

Exercise 57. Consider the BFGS method (Definition 8.5).

(i) Prove that y⊤σ > 0, unless xt = xt−1, or f(λxt+(1−λ)xt−1) = λf(xt)+
(1− λ)f(xt−1) for all λ ∈ (0, 1).

(ii) Prove that if H is positive definite and y⊤σ > 0, then also H ′ is positive
definite. You may want to use the product form of the BFGS update as
developed in Observation 8.6.
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Coordinate Descent
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9.1 Overview

In large-scale learning, an issue with the gradient descent algorithms dis-
cussed in Chapter 2 is that in every iteration, we need to compute the full
gradient ∇f(xt) in order to obtain the next iterate xt+1. If the number of
variables d is large, this can be very costly. The idea of coordinate descent
is to update only one coordinate of xt at a time, and to do this, we only
need to compute one coordinate of ∇f(xt) (one partial derivative). We ex-
pect this to be by a factor of d faster than computation of the full gradient
and update of the full iterate.

But we also expect to pay a price for this in terms of a higher number of
iterations. In this chapter, we will analyze a number of coordinate descent
variants on smooth and strongly convex functions. It turns out that in
the worst case, the number of iterations will increase by a factor of d, so
nothing is gained (but also nothing is lost).

But under suitable additional assumptions about the function f , coor-
dinate descent variants can actually lead to provable speedups. In prac-
tice, coordinate descent algorithms are popular due to their simplicity and
often good performance.

Much of this chapter’s material is from Karimi at al. [KNS16] and Nu-
tini et al. [NSL+15]. As a warm-up, we return to gradient descent.

9.2 Alternative analysis of gradient descent

We have analyzed gradient descent on smooth and strongly convex func-
tions before (Section 2.8) and in particular proved that the sequence of it-
erates converges to the unique global minimum x⋆. Here we go a different
route. We will only prove that the sequence of function values converges
to the optimal function value. To do so, we do not need strong convexity
but only the Polyak-Łojasiewicz inequality, a consequence of strong convex-
ity that we derive next. This alternative simple anlysis of gradient descent
will also pave the way for our later analysis of coordinate descent.

9.2.1 The Polyak-Łojasiewicz inequality

Definition 9.1. Let f : Rd → R be a differentiable function with a global min-
imum x⋆. We say that f satisfies the Polyak-Łojasiewicz inequality (PL in-
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equality) if the following holds for some µ > 0:
1

2
∥∇f(x)∥2 ≥ µ(f(x)− f(x⋆)), ∀ x ∈ Rd. (9.1)

The inequality was proposed by Polyak in 1963, and also by Łojasiewicz
in the same year; see Karimi et al. and the references therein [KNS16]. It
says that the squared gradient norm at every point x is at least propor-
tional to the error in objective function value at x. It also directly implies
that every critical point (a point where ∇f(x) = 0) is a minimizer of f .

The interesting result for us is that strong convexity over Rd implies
the PL inequality.

Lemma 9.2 (Strong Convexity ⇒ PL inequality). Let f : Rd → R be dif-
ferentiable and strongly convex with parameter µ > 0 (in particular, a global
minimum x⋆ exists by Lemma 2.12). Then f satisfies the PL inequality for the
same µ.

Proof. Using strong convexity, we get

f(x⋆) ≥ f(x) +∇f(x)⊤(x⋆ − x) +
µ

2
∥x⋆ − x∥2

≥ f(x) + min
y

(
∇f(x)⊤(y − x) +

µ

2
∥y − x∥2

)
= f(x)− 1

2µ
∥∇f(x)∥2.

The latter equation results from solving a convex minimization problem
in y by finding a critical point (Lemma 1.21). The PL inequality follows.

The PL inequality is a strictly weaker condition than strong convexity.
For example, consider f(x1, x2) = x2

1 which is not strongly convex: every
point (0, x2) is a global minimum. But f still satisfies the PL inequality,
since it behaves like the strongly convex function x → x2 in (9.1).

There are even nonconvex functions satisfying the PL inequality (Exer-
cise 58).

9.2.2 Analysis

We can now easily analyze gradient descent on smooth functions that in
addition satisfy the PL inequality. By Exercise 58, this result also covers
some nonconvex optimization problems.
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Theorem 9.3. Let f : Rd → R be differentiable with a global minimum x⋆.
Suppose that f is smooth with parameter L according to (3.5) and satisfies the PL
inequality (9.1) with parameter µ > 0. Choosing stepsize

γ =
1

L
,

gradient descent (2.1) with arbitrary x0 satisfies

f(xT )− f(x⋆) ≤
(
1− µ

L

)T
(f(x0)− f(x⋆)), T > 0.

Proof. For all t, we have

f(xt+1) ≤ f(xt)−
1

2L
∥∇f(xt)∥2 (sufficient decrease, Lemma 2.7)

≤ f(xt)−
µ

L
(f(xt)− f(x⋆)) (PL inequality (9.1)).

If we subtract f(x⋆) on both sides, we get

f(xt+1)− f(x⋆) ≤
(
1− µ

L

)
(f(xt)− f(x⋆)),

and the statement follows.

9.3 Coordinate-wise smoothness

To analyze coordinate descent, we work with coordinate-wise smoothness.

Definition 9.4. Let f : Rd → R be differentiable, and L = (L1, L2, . . . , Ld) ∈
Rd

+. Function f is called coordinate-wise smooth (with parameter L) if for
every coordinate i = 1, 2, . . . , d,

f(x+ λei) ≤ f(x) + λ∇if(x) +
Li

2
λ2 ∀x ∈ Rd, λ ∈ R, . (9.2)

If Li = L for all i, f is said to be coordinate-wise smooth with parameter L.

Let’s compare this to our standard definition of smoothness in Defi-
nition 2.2. It is easy to see that if f is smooth with parameter L, then f
is coordinate-wise smooth with parameter L. Indeed, (9.2) then coincides
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with the regular smoothness inequality (2.8), when applied to vectors y of
the form y = x+ λei.

But we may be able to say more. For example, f(x1, x2) = x2
1 + 10x2

2

is smooth with parameter L = 20 (due to the 10x2
2 term, no smaller value

will do), but f is coordinate-wise smooth with parameter L = (2, 20). So
coordinate-wise smoothness allows us to obtain a more fine-grained pic-
ture of f than smoothness.

There are even cases where the best possible smoothness parameter
is L, but we can choose coordinate-wise smoothness parameters Li (sig-
nificantly) smaller than L for all i. Consider f(x1, x2) = x2

1 + x2
2 + Mx1x2

for a constant M > 0. For y = (y, y) and x = 0, smoothness requires
that (M + 2)y2 = f(y) ≤ L

2
∥y∥2 = Ly2, so we need smoothness parameter

L ≥ (M + 2).
On the other hand, f is coordinate-wise smooth with L = (2, 2): fixing

one cordinate, we obtain a univariate function of the form x2+ax+ b. This
is smooth with parameter 2 (use Lemma 2.6 (i) along with the fact that
affine functions are smooth with parameter 0).

9.4 Coordinate descent algorithms

Coordinate descent methods generate a sequence {xt}t≥0 of iterates. In
iteration t, they do the following:

choose an active coordinate i ∈ [d]

xt+1 := xt − γi∇if(xt)ei. (9.3)

Here, ei denotes the i-th unit basis vector inRd, and λi is a suitable stepsize
for the selected coordinate i. We will focus on the gradient-based choice
of the stepsize as

xt+1 := xt − γi∇if(xt) ei , (9.4)

Here, ∇if(x) denotes the i-th entry of the gradient ∇f(x).
In the coordinate-wise smooth case, we obtain a variant of sufficient

decrease for coordinate descent.

Lemma 9.5. Let f : Rd → R be differentiable and coordinate-wise smooth with
parameter L = (L1, L2, . . . , Ld) according to (9.2). With active coordinate i in
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iteration t and stepsize

γi =
1

Li

,

coordinate descent (9.4) satisfies

f(xt+1) ≤ f(xt)−
1

2Li

|∇if(xt)|2.

Proof. We apply the coordinate-wise smoothness condition (9.2) with λ =
−∇if(xt)/Li, for which we have xt+1 = xt + λei. Hence

f(xt+1) ≤ f(xt) + λ∇if(xt) +
Li

2
λ2

= f(xt)−
1

Li

|∇if(xt)|2 +
1

2Li

|∇if(xt)|2

= f(xt)−
1

2Li

|∇if(xt)|2.

In the next two sections, we consider randomized variants of coordi-
nate descent that pick the coordinate to consider in a given step at ran-
dom (from some distribution). Using elementary techniques, we will be
able to bound the expected number of iterations. It requires more elaborate
techniques to prove tail estimates of the form that with high probability, a
certain number of steps will not be exceeded [Nes12].

9.4.1 Randomized coordinate descent

In randomized coordinate descent, the active coordinate in step t is chosen
uniformly at random from the set [d]:

sample i ∈ [d] uniformly at random
xt+1 := xt − γi∇if(xt)ei. (9.5)

Nesterov shows that randomized coordinate descent is at least as fast
as gradient descent on smooth functions, if we assume that it is d times
cheaper to update one coordinate than the full iterate [Nes12].

If we additionally assume the PL inequality, we can obtain fast conver-
gence as follows.
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Theorem 9.6. Let f : Rd → R be differentiable with a global minimum x⋆.
Suppose that f is coordinate-wise smooth with parameter L according to Defini-
tion 9.4 and satisfies the PL inequality (9.1) with parameter µ > 0. Choosing
stepsize

γi =
1

L
,

randomized coordinate descent (9.5) with arbitrary x0 satisfies

E[f(xT )− f(x⋆)] ≤
(
1− µ

dL

)T
(f(x0)− f(x⋆)), T > 0.

Comparing this to the result for gradient descent in Theorem 9.3, the
number of iterations to reach optimization error at most ε is by a factor
of d higher. To see this, note that (for µ/L small)(

1− µ

L

)
≈
(
1− µ

dL

)d
.

This means, while each iteration of coordinate descent is by a factor of d
cheaper, the number of iterations is by a factor of d higher, so we have a
zero-sum game here. But in the next section, we will refine the analysis
and show that there are cases where coordinate descent will actually be
faster. But first, let’s prove Theorem 9.6.

Proof. By definition, f is coordinate-wise smooth with (L,L, . . . , L), so suf-
ficient decrease according to Lemma 9.5 yields

f(xt+1) ≤ f(xt)−
1

2L
|∇if(xt)|2.

By taking the expectation of both sides with respect to the choice of i, we
have

E [f(xt+1)|xt] ≤ f(xt)−
1

2L

d∑
i=1

1

d
|∇if(xt)|2

= f(xt)−
1

2dL
∥∇f(xt)∥2

≤ f(xt)−
µ

dL
(f(xt)− f(x⋆)) (PL inequality (9.1)).
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In the second line, we conveniently used the fact that the squared Eu-
clidean norm is additive. Subtracting f(x⋆) from both sides, we therefore
obtain

E[f(xt+1)− f(x⋆)|xt] ≤
(
1− µ

dL

)
(f(xt)− f(x⋆)).

Taking expectations (over xt), we obtain

E[f(xt+1)− f(x⋆)] ≤
(
1− µ

dL

)
E[f(xt)− f(x⋆)].

The statement follows.

In the proof, we have used conditional expectations: E [f(xt+1)|xt] is a
random variable whose expectation is E [f(xt+1)].

9.4.2 Importance Sampling

Uniformly random selection of the active coordinate is not the best choice
when the coordinate-wise smoothness parameters Li differ. In this case,
it makes sense to sample proportional to the Li’s as suggested by Nes-
terov [Nes12]. This is coordinate descent with importance sampling:

sample i ∈ [d] with probability
Li∑d
j=1 Lj

xt+1 := xt −
1

Li

∇if(xt)ei. (9.6)

Here is the result.

Theorem 9.7. Let f : Rd → R be differentiable with a global minimum x⋆.
Suppose that f is coordinate-wise smooth with parameter L = (L1, L2, . . . , Ld)
according to (9.2) and satisfies the PL inequality (9.1) with parameter µ > 0. Let

L̄ =
1

d

d∑
i=1

Li

be the average of all coordinate-wise smoothness constants. Then coordinate de-
scent with importance sampling (9.6) and arbitrary x0 satisfies

E[f(xT )− f(x⋆)] ≤
(
1− µ

dL̄

)T
(f(x0)− f(x⋆)), T > 0.
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The proof of the theorem is Exercise 59. We note that L̄ can be much
smaller than the value L = maxdi=1 Li that appears in Theorem 9.6, so coor-
dinate descent with importance sampling is potentially much faster than
randomized coordinate descent. In the worst-case (all Li are equal), both
algorithms are the same.

9.4.3 Steepest coordinate descent

In contrast to random coordinate descent, steepest coordinate descent (or
greedy coordinate descent) chooses the active coordinate according to

choose i = argmax
i∈[d]

|∇if(xt)|

xt+1 := xt − γi∇if(xt)ei. (9.7)

This is a deterministic algorithm and also called the Gauss-Southwell
rule.

It is easy to show that the same convergence rate that we have obtained
for random coordinate descent in Theorem 9.6 also holds for steepest co-
ordinate descent. To see this, the only ingredient we need is the fact that

max
i

|∇if(x)|2 ≥
1

d

d∑
i=1

|∇if(x)|2 ,

and since we now have a deterministic algorithm, there is no need to take
expectations in the proof.

Corollary 9.8. Let f : Rd → R be differentiable with a global minimum x⋆.
Suppose that f is coordinate-wise smooth with parameter L according to Defini-
tion 9.4 and satisfies the PL inequality (9.1) with parameter µ > 0. Choosing
stepsize

γi =
1

L
,

steepest coordinate descent (9.7) with arbitrary x0 satisfies

f(xT )− f(x⋆) ≤
(
1− µ

dL

)T
(f(x0)− f(x⋆)), T > 0.
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This result is a bit disappointing: individual iterations seem to be as
costly as in gradient descent, but the number of iterations is by factor of d
larger. This comparison with Theorem 9.3 is not fully fair, though, since
in contrast to gradient descent, steepest coordinate descent requires only
coordinate-wise smoothness, and as we have seen in Section 9.3, this can
be better than global smoothness. But steepest coordinate descent also
cannot compete with randomized gradient descent (same number of it-
erations, but higher cost per iteration). However, we show next that the
algorithm allows for a speedup in certain cases; also, it may be possible to
efficiently maintain the maximum absolute gradient value throughout the
iterations, so that evaluation of the full gradient can be avoided.

Strong convexity with respect to ℓ1-norm. It was shown by Nutini et
al. [NSL+15] that a better convergence result can be obtained for strongly
convex functions, when strong convexity is measured with respect to ℓ1-
norm instead of the standard Euclidean norm, i.e.

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µ1

2
∥y − x∥21 , x,y ∈ Rd. (9.8)

Due to ∥y − x∥1 ≥ ∥y − x∥, f is then also strongly convex with µ = µ1 in
the usual sense. On the other hand, if f is µ-strongly convex in the usual
sense, then f satisfies (9.8) with µ1 = µ/d, due to ∥y − x∥ ≥ ∥y − x∥1 /

√
d.

Hence, µ1 may be up to factor of d smaller than µ, and if this happens,
(9.8) will not lead to a speedup of the algorithm. But isn’t µ1 necessarily
smaller than µ by a factor of d ? After all, there are always x,y such that
∥y − x∥ = ∥y − x∥1 /

√
d. But if for those worst-case x,y, the inequality of

strong convexity holds with µ′ > µ, we can achieve µ1 > µ/d. As an exam-
ple for this scenario, Nutini et al. [NSL+15, Appendix C of arXiv version]
compute the best parameters µ, µ1 of strong convexity for a convex func-
tion of the form f(x) = 1

2

∑d
i=1 Lixi and show that µ1 can be significiantly

larger than µ/d.
The proof of convergence under (9.8) is similar to the one of Theo-

rem 9.6, after proving the following lemma: if f is strongly convex with re-
spect to ℓ1-norm, it satisfies the PL inequality with respect to l∞-norm. The
proof is Exercise 61 and follows the same strategy as the earlier Lemma 9.2
for the Euclidean norm. While this requires only elementary calculations,
it does not reveal the deeper reason why ℓ1-norm in strong convexity leads
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to l∞-norm in the PL inequality. This has to do with convex conjugates, but
we will not go into it here.

Lemma 9.9 (Exercise 61). Let f : Rd → R be differentiable and strongly convex
with parameter µ1 > 0 w.r.t. ℓ1-norm as in (9.8). (In particular, f is µ1-strongly
convex w.r.t. Euclidean norm, so a global minimum x⋆ exists by Lemma 2.12.)
Then f satisfies the PL inequality w.r.t. l∞-norm with the same µ1:

1
2
∥∇f(x)∥2∞ ≥ µ1(f(x)− f(x⋆)), ∀x ∈ Rd. (9.9)

Theorem 9.10. Let f : Rd → R be differentiable with a global minimum x⋆.
Suppose that f is coordinate-wise smooth with parameter L according to Defini-
tion 9.4 and satisfies the PL inequality (9.9) with parameter µ1 > 0. Choosing
stepsize

γi =
1

L
,

steepest coordinate descent (9.7) with arbitrary x0 satisfies

f(xT )− f(x⋆) ≤
(
1− µ1

L

)T
(f(x0)− f(x⋆)), T > 0.

Proof. By definition, f is coordinate-wise smooth with (L,L, . . . , L), so suf-
ficient decrease according to Lemma 9.5 yields

f(xt+1) ≤ f(xt)−
1

2L
|∇if(xt)|2 = f(xt)−

1

2L
∥∇f(xt)∥2∞,

by definition of steepest gradient descent. Using the PL inequality (9.9),
we further get

f(xt+1) ≤ f(xt)−
µ1

L
(f(xt)− f(x⋆).

Now we proceed as in the alternative analysis of gradient descent: Sub-
tracting f(x⋆) from both sides, we obtain

f(xt+1)− f(x⋆) ≤
(
1− µ1

L

)
(f(xt)− f(x⋆)),

and the statement follows.
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9.4.4 Greedy coordinate descent

This is a variant that does not even require f to be differentiable. In each
iteration, we make the step that maximizes the progress in the chosen co-
ordinate. This requires to perform a line search by solving a 1-dimensional
optimization problem:

choose i ∈ [d]

xt+1 := argmin
λ∈R

f(xt + λei) (9.10)

There are cases where the line search can exactly be done analytically,
or approximately by some other means. In the differentiable case, we can
take any of the previously studied coordinate descent variants and replace
some of its steps by greedy steps if it turns out that we can perform line
search along the selected coodinate. This will not compromise the conver-
gence analysis, as stepwise progress can only be better.

Figure 9.1: The non-differentiable function f(x) := ∥x∥2 + |x1 − x2|. The
global minimum is (0, 0), but greedy coordinate descent cannot escape any
point (x, x), |x| ≤ 1/2. Figure by Alp Yurtsever & Volkan Cevher, EPFL

Some care is in order when applying the greedy variant in the nondif-
ferentiable case for which the previous variants don’t work. The algorithm
can get stuck in non-optimal points, as for example in the objective func-
tion of Figure 9.1. But not all hope is lost. There are relevant cases where
this scenario does not happen, as we show next.
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Theorem 9.11. Let f : Rd → R be of the form

f(x) := g(x) + h(x) with h(x) =
∑
i

hi(xi), x ∈ Rd, (9.11)

with g convex and differentiable, and the hi convex.
Let x ∈ Rd be a point such that greedy coordinate descent cannot make

progress in any coordinate. Then x is a global minimum of f .

A function h as in the theorem is called separable. Figure 9.2 illustrates
the theorem.

Figure 9.2: The function f(x) := ∥x∥2 + ∥x∥1. Greedy coordinate descent
cannot get stuck. Figure by Alp Yurtsever & Volkan Cevher, EPFL

Proof. We follow Ryan Tibshirani’s lecture.1. Let y ∈ Rd. Using the first-
order characaterization of convexity for g and the definition of h, we obtain

f(y) = g(y) + h(y)

≥ g(x) +∇g(x)⊤(y − x) + h(x) +
d∑

i=1

(hi(yi)− hi(xi)

= f(x) +
d∑

i=1

(∇ig(x)(yi − xi) + hi(yi)− hi(xi)) ≥ f(x),

using that ∇ig(x)(yi − xi) + hi(yi)− hi(xi) ≥ 0 for all i (Exercise 62).
1https://www.stat.cmu.edu/˜ryantibs/convexopt-S15/lectures/

22-coord-desc.pdf
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One very important class of applications here are objective functions of
the form

f(x) + λ∥x∥1,
where f is convex and smooth, and h(x) = λ∥x∥1 is a (separable) ℓ1-
regularization term. The LASSO ( Section 1.6) in its regularized form gives
rise to a concrete such case:

min
x∈Rn

∥Ax− b∥2 + λ∥x∥1 . (9.12)

Whether greedy coordinate descent actually converges on functions as
in Theorem 9.11 is a different question; this was answered in the affirma-
tive by Tseng under mild regularity conditions on g, and under using the
cyclic order of coordinates throughout the iterations [Tse01].

9.5 Summary

Coordinate descent methods are used widely in machine learning appli-
cations. Variants of coordinate methods form the state of the art for the
class of generalized linear models, including linear classifiers and regression
models, as long as separable convex regularizers are used (e.g. ℓ1-norm or
squared ℓ2-norm).

The following table summarizes the converegence bounds of coordi-
nate descent algorithms on coordinate-wise smooth and strongly convex
functions (we only use the PL inequality, a consequence of strong convex-
ity). The Bound column contains the factor by which the error is guaran-
teed to decrease in every step.

Algorithm PL norm Smoothness Bound Result
Randomized ℓ2 L 1− µ

dL
Thm. 9.6

Importance sampling ℓ2 (L1, L2, . . . , Ld) 1− µ
dL̄

Thm. 9.7
Steepest ℓ2 L 1− µ

dL
Cor. 9.8

Steeper (than Steepest) ℓ1 L 1− µ1

L
Thm. 9.10

In the worst case, all algorithms have a Bound of 1 − µ
dL

and there-
fore need d times more iterations than gradient descent. This can fully be
compensated if iterations are d times cheaper.
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In the best case, Steeper (than Steepest) matches the performance of
gradient descent in terms of iteration count. The algorithm is therefore an
attractive choice for problems where we can obtain (or maintain) the steep-
est coordinate of the gradient efficiently. This includes several practical
case, for example when the gradients are sparse, e.g. because the original
data is sparse.

Importance sampling is attractive when most coordinate-wise smooth-
ness parameters Li are much smaller than the maximum. In the best case,
it can be d times faster than gradient descent. On the downside, applying
the method requires to know all the Li. In the other methods, an upper
bound on all Li is sufficient in order to run the algorithm.

9.6 Exercises

Exercise 58. Provide an example of a nonconvex function that satisfies the PL
inequality 9.1!

Exercise 59 (Importance Sampling). Prove Theorem 9.7! Can you come up
with an example from machine learning where L̄ ≪ L = maxdi=1 Li?

Exercise 60. Derive the solution to exact coordinate minimization for the Lasso
problem (9.12), for the i-th coordinate. Write A−i for the n × (d − 1) matrix
obtained by removing the i-th column from A, and same for the vector x−i with
one entry removed accordingly.

Exercise 61. Prove Lemma 9.9, proceeding as in the proof of Lemma 9.2!

Exercise 62. Let f be as in Theorem 9.11 and x ∈ Rd such that f(x + λei) ≥
f(x) for all λ and all i. Prove that ∇ig(x)(yi − xi) + hi(yi)− hi(xi) ≥ 0 for all
y ∈ Rd and all i ∈ [d].
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10.1 Overview

As constrained optimization problems do appear often in practice, we will
give them a second look here. We again consider problems of the form

minimize f(x)
subject to x ∈ X , (10.1)

which we have introduced already in Section 1.4.3.

f

f(x)

x
X ✓ Rd
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Figure 10.1: A constrained optimization problem in dimension d = 2.

The only algorithm we have discussed for this case was projected gra-
dient descent in Chapter 3. This comes with a clear downside that pro-
jections onto a set X can sometimes be very complex to compute, even in
cases when the set is convex. Would it still be possible to solve constrained
optimization problems using a gradient-based algorithm, but without any
projection steps?

From a different perspective, coordinate descent, as we have discussed
in Chapter 9, had the attractive advantage that it only modified one coor-
dinate in every step, keeping all others unchanged. Yet, it is not applicable
in the general constrained case, as we can not easily know when a coordi-
nate step would exit the constraint set X (except in easy cases when X is
defined as a product of intervals). Is there a coordinate-like algorithm also
for general constraint sets X?

It turns out the answer to both previous questions is yes. The algorithm
was discovered by Marguerite Frank and Philip Wolfe in 1956 [FW56],
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giving rise to the name of the method. Historically, the motivation for
the method was different from the two aspects mentioned above. After
the second world war, linear programming (that is to minimize a linear
function over set of linear constraints) had significant impact for many in-
dustrial applications (e.g. in logistics). Given these successes with linear
objectives, Marguerite Frank and Philip Wolfe studied if similar methods
could be generalized to non-linear objectives (including quadratic as well
as general objectives), that is problems of the form (10.1).

10.2 The Algorithm

Similar to projected gradient, the Frank-Wolfe algorithm uses a nontrivial
primitive. Here it is the linear minimization oracle (LMO). For the feasible
region X ⊆ Rd and an arbitrary vector g ∈ Rd (which we can think of an
an optimization direction),

LMOX(g) := argmin
z∈X

g⊤z (10.2)

is any minimizer of the linear function g⊤z over X . We will assume that
a minimizer exists whenever we apply the oracle. If X is closed and
bounded, this is guaranteed.

The Frank-Wolfe algorithm proceeds iteratively, starting from an initial
feasible point x0 ∈ X , using a (time-dependent) stepsize γt ∈ [0, 1].

s := LMOX(∇f(xt)), (10.3)
xt+1 := (1− γt)xt + γts, (10.4)

We immediately see that the algorithm reduces non-linear constrained
optimization to linear optimization over the same set X : It is able to solve
general non-linear constrained optimization problems (10.1), by only solv-
ing a simpler linear constrained optimization over the same set X in each
iteration — that is the call to the linear minimization oracle LMOX (10.2).

But which linear problem is actually helpful to solve in each step —
that is which direction should we give to the linear oracle LMOX? The
Frank-Wolfe algorithm uses the gradient g = ∇f(xt). The rationale is
that the gradient defines the best linear approximation of f at xt. In each
step, the algorithm minimizes this linear approximation over the set X
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Figure 10.2: Illustration of a Frank-Wolfe step from an iterate x.

and makes a step into the direction of the minimizer; see Figure 10.2.

We identify several attractive properties of this algorithm:

• Iterates are aways feasible, if the constraint set X is convex. In other
words, x0,x1, . . . ,xt ∈ X . This follows thanks to the definition of the
linear minimization oracle returning a point s within X , and the fact
that the next iterate xt+1 is on the line segment [s,xt], for γt ∈ [0, 1].
This requires that the stepsize in each iteration is chosen in 0 ≤ γt ≤
1. We postpone the further discussion of the stepsizes to later when
we give the convergence analysis.

• The algorithm is projection-free. As we are going to see later, depend-
ing on the geometry of the constraint set X , the subproblem LMOX

is often easier to solve than a projection onto the same set X . Intu-
itively, this the case because LMOX is only a linear problem, while a
projection operation is a quadratic optimization problem.

• The iterates always have a simple sparse representation: xt is always a
convex combination of the initial iterate and the minimizers s used
so far. We will come back to this point in Section 10.6 below.

162



10.3 On linear minimization oracles

The algorithm is particularly useful for cases when the constraint set X can
be described as a convex hull of a finite or otherwise “nice” set of points
A, formally conv(A) = X . We call A the atoms describing the constraint
set.

In this case, a solution to the linear subproblem LMOX defined in (10.2)
is always attained by an atom a ∈ A. Indeed, every s ∈ conv(X) is a
convex combination s =

∑n
i=1 λiai of finitely many atoms (

∑n
i=1 λi = 1, all

λi nonnegative). It follows that for every g, there is always an atom such
that g⊤s ≥ a⊤

i g. Hence, if s minimizes g⊤z, then there is also an atomic
minimizer.

This allows us to significantly reduce the candidate solutions for the
step directions used by the Frank-Wolfe algorithm. (Note that subprob-
lem (10.2) might still have optimal solutions which are not atoms, but there
is always at least one atomic solution LMOX(g) ∈ A).

The set A = X is a valid (but not too useful) set of atoms. The “opti-
mal” set of atoms is the set of extreme points. A point x ∈ X is extreme if
x ̸∈ conv(X \ {x}). Such an extreme point must be in every set of atoms,
but not every atom must be extreme. All that we require for A to be a set
of atoms is that conv(A) = X .

We give two interesting examples next.

10.3.1 LASSO and the ℓ1-ball

The LASSO problem in its standard (primal) form is given as

min
x∈Rd

∥Ax− b∥2 subject to ∥x∥1 ≤ 1 (10.5)

Here we observe that the constraint set X = {x ∈ Rd : ∥x∥1 ≤ 1} is the unit
ℓ1-ball, the convex hull of the unit basis vectors: X = conv({±e1, . . . ,±ed}).

Linear problems over the unit ℓ1-ball are easy to solve: For any direc-
tion g, the minimizer can be chosen as one of the atoms (the unit basis

163



vectors and their negatives):

LMOX(g) = argmin
z∈X

z⊤g

= argmin
z∈{±e1,...,±en}

z⊤g (10.6)

= −sgn(gi)ei with i := argmax
i∈[d]

|gi| (10.7)

So we only have to look at the vector g and identify its largest coordinate
(in absolute value). This operation is of course significantly more efficient
than projection onto an ℓ1-ball. The latter we have analyzed in Section 3.5
and have shown a more sophisticated algorithm that still did not have
runtime linear in the dimension.

10.3.2 Semidefinite Programming and the Spectahedron

Hazan’s algorithm [Haz08] is an application of the Frank-Wolfe algorithm
to semidefinite programming. We use the notation of Gärtner and Ma-
toušek [GM12, Chapter 5]. In Hazan’s algorithm, each LMO assumes the
form

argmin G • Z
subject to Tr(Z) = 1

Z ⪰ 0.
(10.8)

Here, the feasible region X is the spectahedron, the set of all (symmetric)
positive semidefinite matrices Z ∈ Rd×d of trace 1, and G is a symmetric
matrix. For two square matrices A and B, the notation A • B stands for
their “scalar product”

∑
i,j aijbij , so G • Z is the matrix analog of g⊤z. In

fact, (10.8) is a semidefinite program itself, but of a simple form that allows
an explicit solution, as we show next.

The atoms of the spectahedron turn out to be the matrices of the form
zz⊤ with z ∈ Rd, ∥z∥ = 1 (these are positive semidefinite of trace 1). It re-
mains to show that every positive semidefinite matrix of trace 1 is a convex
combination of suitable atoms. To see this, we diagonalize such a matrix
Z as Z = TDT⊤ where T is orthogonal and D is diagonal, again of trace
1. The diagonal elements λ1, . . . , λd are the (nonnegative) eigenvalues of
Z, summing up to the trace 1. Let ai be the i-th column of T . As T is
orthogonal, we have ∥ai∥ = 1. It follows that Z =

∑d
i=1 λiaia

⊤
i is the de-
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sired convex combination of atoms. We remark that ai is a (unit length)
eigenvector of Z w.r.t. eigenvalue λi.

Lemma 10.1. Let λ1 be the smallest eigenvalue of G, and let s1 be a corresponding
eigenvector of unit length. Then we can choose LMOX(G) = s1s

⊤
1 .

Proof. Since it is sufficient to minimize over atoms, we have

min
Tr(Z)=1,Z⪰0

G • Z = min
∥z∥=1

G • zz⊤ = min
∥z∥=1

z⊤Gz = λ1.

The second equality follows from G • zz⊤ = z⊤Gz for all z (simple rewrit-
ing), and the last equality is a standard result from linear algebra that can
be proved via elementary calculations, involving diagonalization of G.

Now, s1 is easily seen to attain the last minimum, hence s1s
⊤
1 attains the

first minimum, and LMOX(G) = s1s
⊤
1 follows.

10.4 Duality gap — A certificate for optimization
quality

A rather unexpected side benefit of the linear minimization oracle is that
it can be used as a certificate of the optimization quality at our current iter-
ate. Even if the true optimum value f(x⋆) of the problem is unknown, the
point s returned by LMOX(∇f(xt)) lets us compute an upper bound on
the optimality gap f(xt)− f(x⋆).

Given x ∈ X , we define the duality gap (also known as the Hearn gap)
at x as

g(x) := ∇f(x)⊤(x− s) for s := LMOX(∇f(x)). (10.9)

Note that g(x) is well-defined since it only depends on the minimum value
∇f(x)⊤s of LMOX(∇f(x)), but not on the concrete minimizer s of which
there may be many. The duality gap g(x) can be interpreted as the opti-
mality gap ∇f(x)⊤x − ∇f(x)⊤s of the linear subproblem. In particular,
g(x) ≥ 0; see Figure 10.3.

Lemma 10.2. Suppose that the constrained minimization problem (10.1) has a
minimizer x⋆. Let x ∈ X . Then

g(x) ≥ f(x)− f(x⋆),

meaning that the duality gap is an upper bound for the optimality gap.
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Figure 10.3: Illustration of the duality gap at iterate x.

Proof. Using that s minimizes ∇f(x)⊤z over X , we argue that

g(x) = ∇f(x)⊤(x− s)

≥ ∇f(x)⊤(x− x⋆)

≥ f(x)− f(x⋆) (10.10)

where in the last inequality we have used the first-order characterization
of convexity of f (Lemma 1.15).

So the duality gap g(xt)—a value which is available for every itera-
tion of the Frank-Wolfe algorithm—always gives us a guaranteed upper
bound on the unknown error f(xt) − f(x⋆). This contrasts unconstrained
optimization, where we don’t have any such certificate in general.

We argue that it is also a useful upper bound. At any optimal point x⋆

of the constrained optimization problem, the gap vanishes, i.e. g(x⋆) = 0.
This follows from the optimality conditions for constrained convex opti-
mization, given in Lemma 1.27, stating that ∇f(x⋆)⊤(x−x⋆) ≥ 0 ∀x ∈ X .

10.5 Convergence in O(1/ε) steps

We first address the standard way of choosing the stepzise in the Frank-
Wolfe algorithm. We need to assume that the function f is smooth, but
unlike for gradient descent, the stepsize can be chosen independently from
the smoothness parameter.
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10.5.1 Convergence analysis for γt = 2/(t+ 2)

Theorem 10.3. Consider the constrained minimization problem (10.1) where
f : Rd → R is convex and smooth with parameter L, and X is convex, closed
and bounded (in particular, a minimizer x⋆ of f over X exists, and all linear
minimization oracles have minimizers). With any x0 ∈ X , and with stepsizes
γt = 2/(t+ 2), the Frank-Wolfe algorithm yields

f(xT )− f(x⋆) ≤ 2L diam(X)2

T + 1
, T ≥ 1,

where diam(X) := maxx,y∈X ∥x−y∥ is the diameter of X (which exists since X
is closed and bounded).

The following descent lemma forms the core of the convergence proof:

Lemma 10.4. For a step xt+1 := xt+γt(s−xt) with stepsize γt ∈ [0, 1], it holds
that

f(xt+1) ≤ f(xt)− γtg(xt) + γ2
t

L

2
∥s− xt∥2,

where s = LMOX(∇f(xt)).

Proof. From the definition of smoothness of f , we have

f(xt+1) = f(xt + γt(s− xt))

≤ f(xt) +∇f(xt)
⊤γt(s− xt) + γ2

t

L

2
∥s− xt∥2 (10.11)

= f(xt)− γtg(xt) + γ2
t

L

2
∥s− xt∥2,

using the definition (10.9) of the duality gap.

Proof of Theorem 10.3. Writing h(x) := f(x) − f(x⋆) for the (unknown) op-
timization gap at point x, und using the certificate property (10.10) of the
duality gap, that is h(x) ≤ g(x), Lemma 10.4 implies that

h(xt+1) ≤ h(xt)− γtg(xt) + γ2
t

L

2
∥s− xt∥2

≤ h(xt)− γth(xt) + γ2
t

L

2
∥s− xt∥2

= (1− γt)h(xt) + γ2
t

L

2
∥s− xt∥2

≤ (1− γt)h(xt) + γ2
tC, (10.12)
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where C := L
2
diam(X)2.

The convergence proof finishes by induction. Exercise 63 asks you to
prove that for γt = 2

t+2
, we obtain

h(xt) ≤
4C

t+ 1
, t ≥ 1.

10.5.2 Stepsize variants

The previous runtime analysis also holds for two alternative stepsizes. In
practice, convergence might even be faster with these alternatives, since
they are trying to optimize progress, in two different ways. For both al-
ternative stepsizes, we will establish inequality (10.12) with the standard
stepsize γt = 2/(t+ 2) =: µt from which h(xt) ≤ 4/(t+ 1) follows.

Line search stepsize. Here, γt ∈ [0, 1] is chosen such that the progress in
f -value (and hence also in h-value) is maximized,

γt := argmin
γ∈[0,1]

f
(
(1− γ)xt + γs

)
.

Let yt+1 be the iterate obtained from xt with the standard stepsize µt.
From (10.12) and the definition of γt, we obtain the desired inequality

h(xt+1) ≤ h(yt+1) ≤ (1− µt)h(xt) + µ2
tC. (10.13)

Gap-based stepsize. This chooses γt such that the right-hand side in the
first line of (10.12) is minimized. A simple calculation shows that this re-
sults in

γt := min

(
g(xt)

L ∥s− xt∥2
, 1

)
.

Now we establish (10.13) as follows:

h(xt+1) ≤ h(xt)− γtg(xt) + γ2
t

L

2
∥s− xt∥2

≤ h(xt)− µtg(xt) + µ2
t

L

2
∥s− xt∥2

≤ h(xt)− µth(xt) + µ2
t

L

2
∥s− xt∥2

≤ (1− µt)h(xt) + µ2
tC.
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Directly plugging in the definition of γt yields

h(xt+1) ≤
{

h(xt)
(
1− γt

2

)
, γt < 1,

h(xt), γt = 1,

So we make progress in every iteration under the gap-based stepsize (this
is not guaranteed under the standard stepsize), but faster convergence is
not implied.

10.5.3 Affine invariance

The convergence bound on the Frank-Wolfe method that we have devel-
oped in Theorem 10.3,

f(xT )− f(x⋆) ≤ 2L diam(X)2

T + 1
,

is in some sense bad. Consider the problem of minimizing f(x1, x2) =
x2
1 + x2

2 over the unit square X = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}. The
function f (the two-dimensional supermodel) is smooth with L = 2, and
diam(X)2 = 2. Next consider f ′(x1, x2) = x2

1 + (10x2)
2 over the rectangle

X ′ = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1/10}. The function f ′ is smooth with
L′ = 200, and diam(X ′)2 = 1 + 1/100. Hence, our convergence analysis
seems to suggest that the error after T steps of the Frank-Wolfe algorithm
on f ′ over X ′ is roughly 100 times larger than on f over X .

In reality, however, there is no such difference. The reason is that the
two problems (f,X) and (f ′, X ′) are equivalent under rescaling of vari-
able x2, and the Frank-Wolfe algorithm is invariant under this and more
generally all affine transformations of space. Figure 10.4 depicts the two
problems (f,X) and (f ′, X ′) from our example above.

In Chapter 7, we have already encountered affine invariance of a method
for unconstrained optimization, namely Newton’s method.

To argue about the affine invariance formally, we call two problems
(f,X) and (f ′, X ′) affinely equivalent if f ′(x) = f(Ax+b) for some invertible
matrix A and some vector b, and X ′ = {A−1(x− b) : x ∈ X}. The equiva-
lence is that x ∈ X with function value f(x) if and only if x′ = A−1(x−b) ∈
X ′ with the same function value f ′(x′) = f(AA−1(x− b) + b) = f(x). We
call x′ the vector corresponding to x. In Figure 10.4, we have

A =

(
1 0
0 10

)
, b = 0.
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Figure 10.4: Two optimization problems (f,X) and (f ′, X ′) that are equiv-
alent under an affine transformation.

By the chain rule, we get

∇f ′(x′) = A⊤∇f(Ax′ + b) = A⊤∇f(x). (10.14)

Now consider performing an iteration of the Frank-Wolfe algorithm

(a) on (f,X), starting from some iterate x, and

(b) on (f ′, X ′), starting from the corresponding iterate x′,

in both cases with the same stepsize. Because of

∇f ′(x′)⊤z′
(10.14)
= ∇f(x)⊤AA−1(z− b) = ∇f(x)⊤z− c,

where c is some constant, the linear minimization oracle in (b) returns the
step direction s′ = A−1(s−b) ∈ X ′ corresponding to the step direction s ∈
X in (a). It follows that also the next iterates in (a) and (b) will correspond
to each other and have the same function values. In particular, after any
number of steps, both (a) and (b) will incur the same optimization error.

10.5.4 The curvature constant

It follows from the above discussion that a good analysis of the Frank-
Wolfe algorithm should provide a bound that is invariant under affine
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transformations, unlike the bound of Theorem 10.3. For this, we define
a curvature constant of the constrained optimization problem (10.1). The
quantity serves as a combined notion of complexity of both the objective
function f and the constraint set X :

C(f,X) := sup
x,s∈X,γ∈(0,1]
y=(1−γ)x+γs

1

γ2

(
f(y)− f(x)−∇f(x)⊤(y − x)

)
. (10.15)

To gain an understanding of this quantity, note that d(y) := f(y) −
f(x)−∇f(x)⊤(y−x) is the pointwise vertical distance between the graph
of f and its linear approximation at x. By convexity, d(y) ≥ 0 for all
y ∈ X . For y resulting from x by a Frank-Wolfe step with stepsize γ, we
normalize the vertical distance with γ2 (a natural choice if we think of f as
being smooth), and take the supremum over all possible such normalized
vertical distances.

We will see that the convergence rate of the Frank-Wolfe algorithm can
be described purely in terms of this quantity, without resorting to any
smoothness constants L or diameters diam(X). As we have already seen,
the latter two quantities are not affine invariant.

In a similar way as we have done it for the algorithm itself, we can
prove that the curvature constant C(f,X) is affine invariant. Hence, here is
the envisioned good analysis of the Frank-Wolfe algorithm.

Theorem 10.5. Consider the constrained minimization problem (10.1) where f :
Rd → R is convex, and X is convex, closed and bounded. Let C(f,X) be the
curvature constant (10.15) of f over X . With any x0 ∈ X , and with stepsizes
γt = 2/(t+ 2), the Frank-Wolfe algorithm yields

f(xT )− f(x⋆) ≤ 4C(f,X)

T + 1
, T ≥ 1.

Proof. The crucial step is to prove the following version of (10.11):

f(xt+1) ≤ f(xt)−∇f(xt)
⊤γt(s− x) + γ2

tC(f,X). (10.16)

After this, we can follow the remainder of the proof of Theorem 10.3, with
C(f,X) instead of C = L

2
diam(X)2. To show (10.16), we use

x := xt, y := xt+1 = (1− γt)xt + γts, y − x = −γt(x− s),
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and rewrite the definition of the curvature constant (10.15) to get

f(y) ≤ f(x) +∇f(x)⊤(y − x) + γ2
tC(f,X).

Plugging in the previous definitions of x and y, (10.16) follows.

One might suspect this affine independent bound to be worse than the
best bound obtainable from Theorem 10.3 after an affine transformation.
As we show next, this not the case: when f is twice differentiable, C(f,X)

is always bounded by the constant C = L
2
diam(X)2 that determines the

convergence rate in Theorem 10.3.

Lemma 10.6 (Exercise 64). Let f be a convex function which is smooth with
parameter L over X . Then

C(f,X) ≤
L

2
diam(X)2 .

10.5.5 Convergence in duality gap

The following result shows that the duality gap converges as well, essen-
tially at the same rate as the primal error. .

Theorem 10.7. Let f : Rd → R be convex and smooth with parameter L,
and x0 ∈ X , T ≥ 2. Then choosing any of the stepsizes in Section 10.5.2, the
Frank-Wolfe algorithm yields a t, 1 ≤ t ≤ T such that

g(xt) ≤
27/2 · C(f,X)

T + 1

Still, compared to our previous theorem, the convergence of the gap
here is a stronger and more useful result, because g(xt) is easy to com-
pute in any iteration of the Frank-Wolfe algorithm, and as we have seen in
(10.10) serves as an upper bound (certificate) to the unknown primal error,
that is f(xt)− f(x⋆) ≤ g(xt).

The proof of the theorem is left as Exercise 65, and is difficult. The
argument leverages that not all gaps can be small, and will again crucially
rely on the descent Lemma 10.4.
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10.6 Sparsity, extensions and use cases

A very important feature of the Frank-Wolfe algorithm has been pointed
out before, but we would like to make it explicit here. Consider the con-
vergence bound of Theorem 10.5,

f(xT )− f(x⋆) ≤ 4C(f,X)

T + 1
, T ≥ 1.

This means that O(1/ε) many iterations are sufficent to obtain optimality
gap at most ε. At this time, the current solution is a convex combination of
x0 and O(1/ε) many atoms of the constraint set X . Thinking of ε as a con-
stant (such as 0.01), this means that constantly many atoms are sufficient in
order to get an almost optimal solution. This is quite remarkable, and it
connects to the notion of coresets in computational geometry. A coreset is a
small subsets of a given set of objects that is representative (with respect to
some measure) for the set of all objects. Some algorithms for finding small
coresets are inspired by the Frank-Wolfe algorithm [Cla10].

The algorithm and analysis above can be extended to several settings,
including

• Approximate LMO, that is we can allow a linear minimization oracle
which is not exact but is of a certain additive or multiplicative ap-
proximation quality for the subproblem (10.2). Convergence bounds
are essentially as in the exact case [Jag13].

• Randomized LMO, that is that the LMOX solves the linear minimiza-
tion oracle only over a random subset of X . Convergence in O(1/ε)
steps still holds [KPd18].

• Stochastic LMO, that is LMOX is fed with a stochastic gradient instead
of the true gradient [HL20].

• Unconstrained problems. This is achieved by considering growing ver-
sions of a constraint set X . For instance when X is an ℓ1-norm ball,
the algorithm will become similar to popular steepest coordinate
methods as we have discussed in Section 9.4.3. In this case, the
resulting algorithms are also known as matching-pursuit, and are
widely used in the literature on sparse recovery of a signal, also
known as compressed sensing. For more details, we refer the reader
to [LKTJ17].
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The Frank-Wolfe algorithm and its variants have many popular use-
cases. The most attractive uses are for constraint sets X where a projection
step bears significantly more computational cost compared to solving a
linear problem over X . Some examples of such sets include:

• Lasso and other L1-constrained problems, as discussed in Section 10.3.1.

• Matrix Completion. For several low-rank approximation problems,
including matrix completion as in recommender systems, the Frank-
Wolfe algorithm is a very scalable algorithm, and has much lower
iteration cost compared to projected gradient descent. For a more
formal treatment, see Exercise 66.

• Relaxation of combinatorial problems, where we would like to opti-
mize over a discrete set A (e.g. matchings, network flows etc). In
this case, the Frank-Wolfe algorithm is often used together with early
stopping, in order to achieve a good iterate xt being a combination
of at most t of the original points A.

Many of these applications can also be written as constraint sets of the
form X := conv(A) for some set of atoms A, as illustrated in the following
table:

Examples A |A| dim. LMOX (g)
L1-ball {±ei} 2d d ±ei with argmaxi |gi|
Simplex {ei} d d ei with argmini gi
Spectahedron {xx⊤, ∥x∥ = 1} ∞ d2 argmin∥x∥=1 x

⊤Gx

Norms {x, ∥x∥ ≤ 1} ∞ d argmin
s,∥s∥≤1

⟨s,g⟩

Nuclear norm {Y, ∥Y ∥∗ ≤ 1} ∞ d2 ..
Wavelets .. ∞ ∞ ..

10.7 Exercises

Exercise 63 (Induction for the Frank-Wolfe convergence analysis). Given
some constant C > 0 and a sequence of real values h0, h1, . . . satisfying (10.12),
i.e.

ht+1 ≤ (1− γt)ht + γ2
tC for t = 0, 1, . . .
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for γ = 2
t+2

, prove that

ht ≤
4C

t+ 1
for t ≥ 1.

Exercise 64 (Relating Curvature and Smoothness). Prove Lemma 10.6:

Exercise 65 (Duality gap convergence for the Frank-Wolfe algorithm). Prove
Theorem 10.7 on the convergence of the duality gap (which is an upper bound to
the primal error f(xt)− f(x⋆). The proof will again crucially rely on the descent
Lemma 10.4.

Exercise 66 (Frank-Wolfe for Matrix completion). Consider the matrix com-
pletion problem, that is to find a matrix Y solving

min
Y ∈X⊆Rn×m

∑
(i,j)∈Ω

(Zij − Yij)
2

where the optimization domain X is the set of matrices in the unit ball of the trace
norm (or nuclear norm), which is defined the convex hull of the rank-1 matrices

X := conv(A) with A :=
{
uv⊤

∣∣∣ u∈Rn, ∥u∥2=1
v∈Rm, ∥v∥2=1

}
.

Here Ω ⊆ [n] × [m] is the set of observed entries from a given data matrix Z
(collecting the ratings given by users to items for example).

1. Derive the LMOX for this set X for a gradient at iterate Y ∈ Rn×m.

2. Derive the projection step onto X . How do the LMOX and the projection
step compare, in terms of computational cost?
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[Die69] J. Dieudonneé. Foundations of Modern Analysis. Academic
Press, 1969.

[DSSSC08] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar
Chandra. Efficient projections onto the ℓ1-ball for learning in

176

https://web.stanford.edu/~boyd/cvxbook/


high dimensions. In Proceedings of the 25th International Confer-
ence on Machine Learning, pages 272–279, 2008.

[FM91] M. Furi and M. Martelli. On the mean value theorem, in-
equality, and inclusion. The American Mathematical Monthly,
98(9):840–846, 1991.

[FW56] Marguerite Frank and Philip Wolfe. An algorithm for
quadratic programming. Naval Research Logistics Quarterly,
3(1-2):95–110, 1956.
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