Optimization for Machine Learning
CS-439

Lecture 6: Non-convex optimization

Nicolas Flammarion

EPFL — github.com/epfml/0OptML_course

April 1, 2022


github.com/epfml/OptML_course

Trajectory Analysis

Even if the "landscape” (graph) of a nonconvex function has local minima, saddle
points, and flat parts, gradient descent may avoid them and still converge to a global
minimum.

For this, one needs a good starting point and some theoretical understanding of what
happens when we start there—this is trajectory analysis.

2018: trajectory analysis for training deep linear linear neural networks, under suitable
conditions [ACGH18].

Here: vastly simplified setting that allows us to show the main ideas (and limitations).

EPFL Optimization for Machine Learning CS-439

N



Linear models with several outputs
Recall: Learning linear models

» n inputs X1, ...,X,, where each input x; € R¢
> n outputs y1,...,yn € R
» Hypothesis (after centering):

-
Yi =W T,
for a weight vector w = (wy, ..., wq) € R? to be learned.
Now more than one output value:
» n outputs yi,...,Yn, Where each output y; € R™
» Hypothesis:
yi = WXiv

for a weight matrix W € R™*< to be learned.

EPFL Optimization for Machine Learning CS-439



Minimizing the least squares error

Compute
n
W* = argmin g IWx; —yill?.

WeRmxd i=1

» X € RY™: matrix whose columns are the x;

» Y € R™*™: matrix whose columns are the y;

Then

W* = argmin |[WX — Y%,
WeRmx*d

where [[Alz = />, ; a?j is the Frobenius norm of a matrix A.

Frobenius norm of A = Euclidean norm of vec(A) ("flattening” of A)

EPFL Optimization for Machine Learning CS-439

4/21



Minimizing the least squares error ||

W* = argmin |WX — Y%
WeRmxd

is the global minimum of a convex quadratic function f(W).

To find W*, solve V f(IW) = 0 (system of linear equations).

< training a linear neural network with one layer under least squares error.

x—=y=Wx

EPFL Optimization for Machine Learning CS-439

5/21



Deep linear neural networks

&
\\(/@vé@\
S e
DN NSVl Xy = WaWaWix
LK

N

Not more expressive:

SEXY 717
ST
&

x—y=W3sWeoWix & x—y=Wx, W.=W3WW.

EPFL Optimization for Machine Learning CS-439



Training deep linear neural networks

With 7 layers:
W* = argmin ||[W,Wy_--- W1 X —Y|%,

Wi, Wa,...,.W,
Nonconvex function for ¢ > 1.

Simple playground in which we can try to understand why training deep neural
networks with gradient descent works.

Here: all matricesare 1 x 1, Wy =2;, X =1,Y =1¢4=d = f:R* >R,
1[& i
f(x) ::2<k1_[1xk—1> .

Toy example in our simple playground.

But analysis of gradient descent on f has similar ingredients as the one on general
deep linear neural networks [ACGH18].

EPFL Optimization for Machine Learning CS-439



A simple nonconvex function

2
1
As d is fixed, abbreviate [[¢{_, 24 by [T, zx: f(x) = 5 (H T — 1)
k

2.0

1.5}
1.0}
0.5}

NI R

0.5}

ol \

-1.5}

o

-2.0

EPFL Optimization for Machine Learning CS-439 LeVeI set p|0t 8/21



The gradient

Vf(x) = (H:ck—1> J[IESSIED

k k#£1 k#£d
20 T
15 Critical points (V f(x) = 0):
| > [, zx = 1 (global
minima)
" ! » d = 2: the hyperbola
S 00 S : {(z1,22) : x129 = 1}
05 <& > at least two of the x, are
o x zero (saddle points)
02, B\ > d = 2: the origin
s \ %\o\ i (21, 22) = (0.0)
20 -2 —1% 0 1 2

x_1

EPFL Optimization for Machine Learning CS-439 9/21



Negative gradient directions (followed by gradient descent)

2.0

1.5

1.0f \\

.Q/

¥

-

=}
=)
1
|
|
|
|
1
|
|
1
|
il
1
|
4

S}
N -
oS
S

),

[ oo®
b
/

|
N
|
-
x
[
=
=
N

Difficult to avoid convergence to a global minimum, but it is possible (Exercise 42).

EPFL Optimization for Machine Learning CS-439 10/21



Convergence analysis: Overview
Want to show that for any d > 1, and from anywhere in X = {x:x > 0,]], x; <1},
gradient descent will converge to a global minimum.

f is not smooth over X. We show that f is smooth along the trajectory of gradient
descent for suitable L, so that we get sufficient decrease

Floxen) < 7o) = 5= IVFGIP, 120

Then, we cannot converge to a saddle point: all these have (at least two) zero entries
and therefore function value 1/2. But for starting point xo € X, we have f(xg) < 1/2,
so we can never reach a saddle while decreasing f.

Doesn't this imply converge to a global mimimum? No!

» Sublevel sets are unbounded, so we could in principle run off to infinity.

» Other bad things might happen (we haven't characterized what can go wrong).

EPFL Optimization for Machine Learning CS-439



Convergence analysis: Overview ||

For x > 0, ][, xx > 1, we also get convergence (Exercise 41).
= convergence from anywhere in the interior of the positive orthant {x : x > 0}.

But there are also starting points from which gradient descent will not converge to a
global minimum (Exercise 42).

EPFL Optimization for Machine Learning CS-439 12/21



Main tool: Balanced iterates
Definition
Let x > 0 (componentwise), and let ¢ > 1 be a real number. x is called c-balanced if
xz; <cxjforalll <i,5 <d.
Any initial iterate xo > 0 is c-balanced for some (possibly large) ¢

Lemma

Let x > 0 be c-balanced with [ ], x; < 1. Then for any stepsize v > 0,
x':=x — vV f(x) satisfies x' > x (componentwise) and is also c-balanced.

Proof.
(Il ze — DI zx) 2 0. Vf(x) = [Ixzr —1) <Hk7é1 Thy« v s Hlﬁéd xk)-

. For i, 7, we have z; < cz; and z; < cx;
Gradient descent step: J J
' (& 1/z; < ¢/xj). We therefore get

A
l = - > =1,...,d. A A
Ty, l‘k‘i'xk_xk;a k=1,...,d x—xz+—<cxj+—c cx;-.

EPFL Optimization for Machine Learning CS-439 7/ :Z']



Bounded Hessians along the trajectory
Compute V2 f(x):

V2f(x);; is the j-th partial derivative of the i-th entry of V f(x).

(V)i = (1;[ Tk — 1) [T

2
2 [Tt -
Vo f(x)ij = ki
QHIEkHl'k — H T,
k#i  k#j k#i,j

EPFL Optimization for Machine Learning CS-439

14/21



Bounded Hessians along the trajectory Il

Lemma
Suppose that x > 0 is c-balanced. Then for any I C {1,...,

') = e (i)

d}, we have

c
kI
Proof.
For any i, we have 2¢ > (1/¢)?]],, =% by balancedness, hence x; > (1/¢)([], z1)"/.It
follows that
1-|1]/d
ka _ 1 2k < mHk Tk |I|/d ka '
T My = (T )
The lower bound follows in the same way from z¢ < ¢4 [, z. O
15/21

EPFL Optimization for Machine Learning CS-439



Bounded Hessians along the trajectory Il
Lemma

Let x > 0 be c-balanced with [[, x, < 1. Then
IV2 Gl < [IV2F G0 < 3de™.
where ||A||» is the Frobenius norm and || A|| the spectral norm.

Proof.

|All < ||A||p: Exercise 43. Now use previous lemma and [], z; < 1:

V2 ()| = [(J] zw)?l < €

P
‘VQf(X)ij‘ < ’2H$k Hl“k’ + | H x| < 32
KE k) oy

Hence, ’

EPFL Optimization for Machine Learning CS-439

VQf(X)H; < 9d?c*. Taking square roots, the statement follows.

16/21



Smoothness along the trajectory
Lemma
Let x > 0 be c-balanced with [, x, < 1, L = 3dc?. Let:=1/L. Then for all
O0<v<y,
x =x—-vVf(x)>x

is c-balanced with [], «;. < 1, and f is smooth with parameter L over the line
segment connecting x and x — vV f(x).
Proof.

» x' > x > 0is c-balanced by Lemma 6.5.

» Vf(x)# 0 (due to x’ > 0,[[, zx < 1, we can't be at a critical point).

» No overshooting: we can't reach ], ). =1 (global minimum) for v < v, as f is

smooth with parameter L between x and x’ (using previous bound on Hessians in
Lemma 6.1).

» By continutity, [[, z}, <1 for all v <.

» f is smooth with parameter L between x and x’ for v = +.
EPFL Optimization for Machine Learning CS-439



Convergence

Theorem

Let ¢ > 1 and § > 0 such that xg > 0 is c-balanced with 6 < [].(x0)r < 1. Choosing

stepsize
1
77 342
gradient descent satisfies
52\"

» Error converges to 0 exponentially fast.

» Exercise 44: iterates themselves converge (to an optimal solution).

EPFL Optimization for Machine Learning CS-439



Convergence: Proof
Proof.

» Fort >0, f is smooth between x; and x;11 with parameter L = 3dc2.

» Sufficient decrease:
1
J(xe1) < f(xe) — 6de2 IV f(xe)|?

For every c-balanced x with § <[],z <1, |[Vf(x)||* equals

2

2-2/d 2
2fx)> ([ [[=+] = 2f(x)§2 (ka) > 2f(x);i2 (H xk> > 2f(x);i252.
: . A

=1 \ k#i k

1 d o 52
> Hence, f(x¢11) < f(x¢) — WQf(Xt)Cjé = f(x¢) <1 — 3C4> .

EPFL Optimization for Machine Learning CS-439 D 19/21



Discussion
Fast convergence as for strongly convex functions!
But there is a catch. ..
Consider starting point xo = (1/2,...,1/2).
& < [Tj(x0)r =274

Decrease in function value by a factor of

per step.
Need T =~ 4% to reduce the initial error by a constant factor not depending on d.
Problem: gradients are exponentially small in the beginning, extremely slow progress.

For polynomial runtime, must start at distance O(1/v/d) from optimality.

EPFL Optimization for Machine Learning CS-439



Bibliography

@ Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu.
A convergence analysis of gradient descent for deep linear neural networks.
CoRR, abs/1810.02281, 2018.

EPFL Optimization for Machine Learning CS-439 21/21



